PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modeling of body force induced by corona discharge

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie numeryczne siły masowej generowanej przez wyładowanie koronowe
Języki publikacji
EN
Abstrakty
EN
The paper presents the theoretical basis and results of numerical modeling of corona discharge phenomenon carried out to determine the value of body force that induces the flow of surrounding fluid. The system of two partial differential equations is solved with the values of electric potential ϕ and space charge density ρq as unknowns. The first equation is of Poisson-type with Laplacian acting on the value of potential and source term dependent on space charge density as well as electric permittivity of the medium. The second equation is current continuity equation, where the current density is composed of charge carrier diffusion term and the term describing their drift in electric field. Particular attention was given to the boundary condition of space charge density due to its indirect nature. Geometry of the problem assumes that positive corona discharge takes place on the sharp edge of the blade-shaped anode while flat grounded plate acts as a cathode. Such configuration enables simplified analysis in 2D Cartesian coordinates assuming that the section plane is sufficiently far from the lateral edges of the blade. The system of equations is solved with MOOSE (Multiphysics Object-Oriented Simulation Environment) Framework released in public domain on GNU LGPL license by Idaho National Laboratory. Presented results include 2D distributions of electric potential, electric field strength, space charge density and body force in air surrounding electrodes.
PL
Artykuł prezentuje podstawy teoretyczne oraz wyniki modelowania numerycznego zjawiska wyładowania koronowego w celu wyznaczenia wartości siły masowej wymuszającej przepływ medium, w którym to wyładowanie zachodzi. Rozwiązywany jest układ dwóch równań różniczkowych cząstkowych, gdzie niewiadomymi są wartości potencjału elektrycznego ϕ oraz gęstości przestrzennej ładunku ρq. Pierwsze z równań ma postać równania Poissona z laplasjanem operującym na wartości potencjału oraz członem źródła zależnym od gęstości przestrzennej ładunku i przenikalności elektrycznej ośrodka. Drugie z równań to równanie ciągłości prądu, gdzie jako składniki gęstości prądu elektrycznego uwzględniono człon odpowiedzialny za dyfuzję nośników ładunku oraz człon opisujący ich dryf w polu elektrycznym. Szczególną uwagę zwrócono na warunek brzegowy przestrzennej gęstości ładunku ze względu na jego pośredni charakter. Geometria problemu zakłada, że wyładowanie koronowe zachodzi na anodzie w kształcie ostrza, podczas gdy katodę stanowi uziemiona płaska płytka. Taka geometria pozwala na uproszczenie analizy do przypadku rozpatrywanego w dwuwymiarowych współrzędnych kartezjańskich przy założeniu, że płaszczyzna przekroju znajduje się odpowiednio daleko od bocznych krawędzi ostrza. Do rozwiązania układu równań wykorzystano środowisko MOOSE (Multiphysics Object-Oriented Simulation Environment) Framework udostępnione w domenie publicznej na licencji GNU LGPL przez Idaho National Laboratory. Przedstawione wyniki obejmują dwuwymiarowe rozkłady wartości potencjału i pola elektrycznego, gęstości przestrzennej ładunku oraz siły masowej w medium otaczającym elektrody.
Rocznik
Strony
29--42
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Rzeszow University of Technology, 8 Powstańców Warszawy Ave., 35-959 Rzeszów
Bibliografia
  • [1] Jewell-Larsen N.E., Ran H., Zhang Y., Schwiebert M.K., Honer K.A., Mamishev A.V.: Electrohydrodynamic (EHD) cooled laptop, 2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 261–266, San Jose, March 2009.
  • [2] Kamboh S.A., Labadin J., Rigit A.R.H.: Computational modeling and simulation of EHD ion-drag pumping using finite difference method, 2013 1st International Conference on Artificial Intelligence, Modelling and Simulation, 207–211, Kota Kinabalu, December 2013.
  • [3] Gallandat N., Rhett Mayor J.: Novel heat sink design utilizing ionic wind for efficient passive thermal management of grid-scale power routers, Journal of Thermal Science and Engineering Applications, 7 (2015) 31004-1–31004-8.
  • [4] Komeili B., Chang J., Harvel G.D., Ching C.Y., Brocilo D.: Flow characteristics of wire-rod type electrohydrodynamic gas pump under negative corona operations, Journal of Electrostatics, 66 (2008) 342–353.
  • [5] Zhang J., Lai F.C.: Effect of emitting electrode number on the performance of EHD gas pump in a rectangular channel, Journal of Electrostatics, 69 (2011) 486–493.
  • [6] Adamiak K., Atten P.: Simulation of corona discharge in point–plane configuration, Journal of Electrostatics, 61 (2004) 85–98.
  • [7] Adamiak K., Atrazhev V., Atten P.: Corona discharge in the hyperbolic point-plane configuration: Direct ionization criterion versus approximate formulations, IEEE Transactions on Dielectrics and Electrical Insulation, 12 (2005) 1025–1033.
  • [8] Khaddour B., Atten P., Coulomb J.-L.: Electrical field modified by injected space charge in blade-plate configuration, IEEE Transactions on Magnetics, 42 (2006) 651–654.
  • [9] Zhao L., Adamiak K.: EHD flow in air produced by electric corona discharge in pin–plate configuration, Journal of Electrostatics, 63 (2005) 337–350.
  • [10] Jewell-Larsen N.E., Karpov S.V, Krichtafovitch I.A., Jayanty V., Hsu C.-P., Mamishev A.V.: Modeling of corona-induced electrohydrodynamic flow with COMSOL multiphysics, Proc. ESA Annual Meeting on Electrostatics, Paper E1, 1–13, Minneapolis, June 2008.
  • [11] Jewell-Larsen N.E., Zhang P.Q., Hsu C.-P., Krichtafovitch I.A., Mamishev A.V.: Coupled-physics modeling of electrostatic fluid accelerators for forced Convection cooling, 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 1–10, San Francisco, June 2006.
  • [12] Ahmedou O., Havet M.: Effect of process parameters on the EHD airflow, Journal of Electrostatics, 67 (2009) 222–227.
  • [13] Quast M., Lalic N.R.: Measuring and calculation of positive corona currents using COMSOL Multiphysics®, Proceedings of the COMSOL Conference, 1–7, Milan 2009.
  • [14] Zhang J., Zhao C., Li H., Tao W.: 3D numerical simulation of heat transfer of a heated plate under the electric field generated by a needle electrode, Mathematical Problems in Engineering, 2014, 1–10.
  • [15] Martins A.A.: Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure, Physics of Plasmas, 19 (2012) 1–11.
  • [16] Jackson J.D.: Classical Electrodynamics, 3rd ed., Wiley, New York 1999.
  • [17] Castellanos A.: Electrohydrodynamics, Springer-Verlag Wien GmbH, New York1998.
  • [18] Tirumala R., Go D.B.: Comparative study of corona discharge simulation techniques for electrode configurations inducing non-uniform electric fields, Journal of Electrostatics, 72 (2014) 99–106.
  • [19] Gaston D., Newman C., Hansen G., Lebrun-Grandié D.: MOOSE: A paralel computational framework for coupled systems of nonlinear equations, Nuclear Engineering and Design, 239 (2009) 1768–1778.
  • [20] Kirk B.S., Peterson J.W., Stogner R.H., Carey G.F.: libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations, Engineering with Computers, 22 (2006) 237–254.
  • [21] Bouziane A., Hidaka K., Taplamacioglu M.C., Waters R.T.: Assessment of corona models based on the Deutsch approximation, Journal of Physics D: Applied Physics, 27 (1994) 320–329.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1860417-5e31-4cf3-bf6b-fb617253134f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.