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NUMERICAL MODELING OF BODY FORCE 

INDUCED BY CORONA DISCHARGE 

The paper presents the theoretical basis and results of numerical modeling of co-

rona discharge phenomenon carried out to determine the value of body force that 

induces the flow of surrounding fluid. The system of two partial differential equa-

tions is solved with the values of electric potential ϕ and space charge density ρq as 

unknowns. The first equation is of Poisson-type with Laplacian acting on the value 

of potential and source term dependent on space charge density as well as electric 

permittivity of the medium. The second equation is current continuity equation, 

where the current density is composed of charge carrier diffusion term and the 

term describing their drift in electric field. Particular attention was given to the 

boundary condition of space charge density due to its indirect nature. Geometry of 

the problem assumes that positive corona discharge takes place on the sharp edge 

of the blade-shaped anode while flat grounded plate acts as a cathode. Such con-

figuration enables simplified analysis in 2D Cartesian coordinates assuming that 

the section plane is sufficiently far from the lateral edges of the blade. The system 

of equations is solved with MOOSE (Multiphysics Object-Oriented Simulation 

Environment) Framework released in public domain on GNU LGPL license by 

Idaho National Laboratory. Presented results include 2D distributions of electric 

potential, electric field strength, space charge density and body force in air sur-

rounding electrodes. 

Keywords: ion wind, electrostatic fluid accelerator, EHD flow, finite element 

method, system of differential equations 

1. Introduction 

Electrostatic Fluid Accelerators (EFA) have recently drawn some attention 

as a potential alternative to rotary devices mainly in electronic cooling applica-

tions. Besides some considerable drawbacks such as a need for very high volt-

age, the technology has also a substantial advantage: it is able to propel transfer 

fluid without any moving parts. Instead the momentum is transferred to neutral 

gas molecules by ions created with corona discharge and accelerated in electric 

field resulting in an electrohydrodynamic (EHD) fluid flow. The proof that 
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Electrostatic Fluid Accelerator can successfully replace regular rotary fan is pre-

sented in [1] where two EHD blowers were fitted into the functional laptop 

computer. Although the temperatures of CPU and GPU with EHD cooling was 

found to be approximately 10°C higher than those observed with stock rotary 

fans, it was indicated that internal design of computer was optimized for regular 

fan and not for an EHD blower. 

Nomenclature 

A coefficient of space charge density boundary condition (CV
-1

m
-2

) 

D ion diffusivity coefficient (m
2
s

-1
) 

E electric field vector (Vm
-1

) 

E electric field strength (magnitude) (Vm
-1

) 

E0 critical electric field strength (Vm
-1

) 

F body force vector (Nm
-3

) 

J current density vector (Am
-2

) 

r electrode radius (m) 

U velocity vector (ms
-1

) 

Greek symbols 

δ correction coefficient in Peek’s formula 

ε0 dielectric permittivity of free space (Fm
-1

) 

εr relative permittivity of medium 

μ ion mobility (m
2
V

-1
s

-1
) 

ρq space charge density (Cm
-3

) 

ϕ electric potential (V) 

Abbreviations 

BC Boundary Condition 

BEM Boundary Element Method 

CPU Central Processing Unit 

EFA  Electrostatic Fluid Accelerator 

EHD Electrohydrodynamics 

FDM Finite Difference Method 

FEM Finite Element Method 

GPU Graphics Processing Unit 

IC  Initial Condition 

JFNK Jacobian-Free Newton-Krylov 

GNU LGPL GNU Lesser General Public License 

LU  Lower Upper (decomposition) 

MOC Method of Characteristics 

PJFNK Preconditioned Jacobian-Free Newton-Krylov 
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The assessment of performance of the Electrostatic Fluid Accelerator usu-

ally needs an experimental investigation but it is often beneficial to precede such 

research with numerical modeling. A number of papers addressed that issue in 

recent years mainly adopting one of the two approaches. The first is an applica-

tion of custom numerical codes written specifically for corona discharge phe-

nomenon while the second relies on commercial Finite Element Method (FEM) 

simulation software. 

Among custom codes the Finite Difference Method (FDM) is often pre-

ferred due to its simplicity. The solution of corona discharge problem based 

on FDM is presented in [2]. Since equations are tightly coupled, authors pro-

posed an iterative algorithm implemented in MATLAB to calculate electric po-

tential, current density, fluid pressure and velocity. The Finite Difference 

Method was also used in [3], however authors reported problems with numerical 

stability due to high gradients of electric field which required special approach 

involving ion balance performed on grid cells. In [4] an iterative FDM solution 

was divided into two stages. The first was performed to find a boundary condi-

tion for ion number density on the corona wire while the second one sought the 

final solution. Problems involving multiple corona electrodes usually require 

full 3D solution which also can be obtained by Finite Difference Method as 

demonstrated in [5]. 

The main drawback of FDM is its inability to account for sharp geometry 

of corona electrode. In fact a common approximation in this method is to treat 

a wire or electrode tip as a nodal point which is obviously far from reality. To 

overcome this problem some more sophisticated algorithms have been devel-

oped. In [6] a hybrid approach involving Boundary Element Method (BEM), 

Finite Element Method and the Method of Characteristics (MOC) is presented. 

This allows each type of equation to be solved with most effective method: 

Laplace approximation is solved with BEM, Poisson equation with FEM and 

charge transport with MOC. The paper also addresses the issue of space charge 

density boundary condition on the surface of corona electrode which is depend-

ent on the value of electric field strength. In [7] this boundary condition is inves-

tigated even further by comparison between direct ionisation criterion and two 

approximate formulations. Similar FEM-MOC hybrid method is demonstrated 

in [8], where structured mesh used for MOC is constructed on the basis of elec-

tric field lines and equipotential lines and has to be redefined in each iteration. 

The solution obtained with hybrid method was also used to calculate body force 

and velocity in [9]. Comparison of simulation results with hot-wire anemometer 

measurements showed a good agreement except for points close to the axis. 

Among commercial FEM software COMSOL Multiphysics seems to be the 

most popular choice in the field of corona discharge problems. It provides the 

means to solve Poisson equation with ready-made Electrostatics module while 

charge transport may be implemented with Coefficient Form PDE or General 

Form PDE module. The software also has simple interface for coupling the solu-
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tion with Laminar Flow module to calculate velocity field. In [10] and [11] 

COMSOL Multiphysics was used to solve corona discharge problem in wire-to-

grid and blade-to-plane geometries respectively. It is important to note that 

charge transport equation was solved with convection component resulting from 

fluid movement so the model was fully coupled with Navier-Stokes equations. 

Combined iterative scheme involving COMSOL Multiphysics and MATLAB 

was used in [12] where MATLAB algorithm was used to find space charge den-

sity boundary condition on the surface of corona electrode. In [13] analysis per-

formed with COMSOL Multiphysics aided development of flow rate sensor us-

ing corona discharge phenomenon. Examples of 3D analysis of EHD problem 

are scarce but not absent. In [14] such problem was solved with COMSOL Mul-

tiphysics in pin-to-plane configuration, but unfortunately the details of handling 

sharp electrode geometry were not clarified. Corona discharge problem with 

uncommon configuration of electrodes was solved with COMSOL Multiphysics 

in [15]. In addition to positive and neutral electrodes also a negative electrode 

was introduced to further accelerate ion produced in ionisation zone. 

In present paper a solution of corona discharge problem in 2D blade-to-

plane geometry is presented. A system of two coupled partial differential equa-

tions is solved resulting in electric potential ϕ and space charge density ρq distri-

butions. Finally, the body force acting on the fluid is calculated. The issue of 

non-uniform space charge density on the surface of the corona electrode is also 

addressed. The problem is solved with MOOSE (Multiphysics Object-Oriented 

Simulation Environment) Framework by Idaho National Laboratory available 

in public domain on GNU LGPL license. 

2. Problem statement 

2.1. Governing equations 

Distribution of electric potential ϕ is described by Poisson equation known 

from electrostatics [16]: 

q

0 r

ρ
φ

ε ε
∆ = −  (1) 

where Δ is Laplace operator, ε0 is dielectric permittivity of free space and εr is 

relative permittivity of the medium. Electric field vector may be calculated as: 

φ= −∇E  (2) 

The second governing equation imposes current continuity: 

0∇ ⋅ =J  (3) 
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where J is current density. In corona discharge problem it may be expressed as  

a sum of three components – the term responsible for charge carriers drift in 

electric field, the convection term and the diffusion term [17]: 

q q qDµ ρ ρ ρ= + − ∇J E U  (4) 

where μ is ion mobility in an electric field, U is medium velocity vector and D is 

diffusivity coefficient of ions. As can be seen from (4) calculation of current 

density requires knowledge about fluid velocity so the coupling to Navier-

Stokes equations is necessary. Nevertheless, vast majority of solution methods 

developed up to date neglects this coupling on the basis of the fact that ion ve-

locity due to convection is about an order of magnitude smaller than the velocity 

resulting from a drift in electric field. This assumption simplifies (4) to the form: 

q qDµ ρ ρ= − ∇J E  (5) 

Corona discharge problem, therefore, comes down to solution of equations 

(1) and (3) with current density given by (5) and appropriate boundary condi-

tions. Relative permittivity of the medium εr, ion mobility μ and diffusivity coef-

ficient of ions D are parameters of the model. Finally, the body force may be 

calculated as: 

q qρ ρ φ= = − ∇F E  (6) 

2.2. Geometry and boundary conditions 

The geometry of the problem under consideration consists of a sharp blade 

acting as corona electrode and flat plate as a neutral cathode. Electric potential 

and space charge density distributions at a distance sufficiently far from lateral 

edges of the blade may be, therefore, approximated by solution in 2D Cartesian 

coordinates. The blade is 0.6 mm thick with wedge-shaped contraction towards 

the edge and 1.65 mm radius of fillet between flat and wedge sections. The very 

edge of the blade is modelled as a section of a cylinder with a radius of 50 μm. 

The distance from the tip of corona electrode to flat cathode is 5 mm. The axis 

of the blade is also the axis of symmetry for the whole geometry which means 

that only half of the domain needs to be modelled. Computational domain is 

shown in Fig. 1. 
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Fig. 1. Geometry of the problem. A – corona electrode, B – cathode, C – free boundaries,  

D – axis of symmetry. Dimensions given in mm 

The system of equations (1) and (3) needs boundary conditions (BC) for 

both electric potential and space charge density. On the surface of the electrodes 

it is straightforward to prescribe Dirichlet type boundary conditions for electric 

potential. In the problem under consideration potential on the corona electrode 

was set to 12000 V while the cathode was grounded. Zero total flux was denoted 

as BC for potential at remaining part of the boundary (i.e. axis of symmetry and 

free boundaries). For space charge density zero total flux is assigned on the axis 

of symmetry and zero diffusive flux on the cathode and free boundaries as sug-

gested for example in [11]. The boundary condition for space charge density on 

the surface of the corona electrode should act as a charge injection law but there 

is no generally accepted method to account for this effect. Some authors use an 

iterative procedure of finding a value of ρq on the corona electrode such that the 

value of electric current calculated with numerical model equals the value 

measured experimentally. In the absence of experimental data this approach is 

however unfeasible. Alternative method is based on Kaptzov’s assumption 

which states that with increasing voltage a corona discharge occurs at a point 

with certain value of electric field but once a discharge is established local E 

value remains constant despite of changing voltage. The magnitude of this criti-

cal electric field strength E0 is often obtained from Peek’s formula whose two 

variants have been derived for highly symmetrical spherical and cylindrical ge-

ometries. It is therefore, strictly valid only if electric field is uniform over the 

surface of corona electrode [6, 18]. In simple configurations where this condi-

tion is observed it is possible to iteratively search for uniform value of space 

charge density on the surface of corona electrode such that resulting value of 

electric field strength meets the critical value E0 calculated from Peek’s formula. 

However, in general case prescribing uniform value of ρq over entire surface of 

corona electrode must be seen as approximation. 

To overcome this problem an alternative form of space charge density 

boundary condition was proposed in [8]: 
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where ρq0 is local value of space charge density on the surface of corona elec-

trode, E is local value of electric field strength, E0 is critical value of electric 

field strength and A is an arbitrary coefficient. Such formulation imposes non-

uniform space charge density distribution on the surface of corona electrode 

in case of non-uniform electric field and ensures that injection of charge takes 

place only at points where the discharge occurs (i.e. E>E0). Although such BC 

presents significant improvement over the uniform ρq formulation, it introduces 

some new problems. First of them is the fact that equation (7) assumes the cou-

pling between Dirichlet-type BC for space charge density and the solution 

of potential field which may potentially pose some difficulties for numerical 

algorithm. The second is the lack of clarity in the matter of proper choice of the 

value of the coefficient A. In [8] authors suggest that this value should be large 

which is not clear but justified in their case since they solve the non-dimensional 

form of governing equations. 

In present work a slight modification to BC defined by (7) is proposed. To 

avoid coupling with Poisson potential solution the local value of E is replaced 

by the value obtained from precomputed Laplace solution. Such solution calcu-

lated simply by setting a right hand side of equation (1) to 0 is fast, robust and 

may be reached within few seconds. It is important to note that such approach 

cannot be considered strictly – it is clearly another approximation. Since charge 

injection generally causes a decrease in the value of local electric field, the 

Laplace solution gives an estimation of maximum possible area of corona dis-

charge but it is still closer to real physics of the problem than uniform ρq ap-

proach where corona area must be set arbitrarily. 

The issue of the A coefficient from equation (7) is addressed iteratively 

in present work. Instead of setting its value arbitrarily, the simulation is per-

formed several times with different values of A until the average electric field 

strength over coronating points on the electrode surface meets the value of E0. 

The critical value E0 of electric field for the purposes of iteration scheme as well 

as for the equation (7) is calculated from Peek’s formula for cylindrical geome-

try [6]: 

6
0

0.308
3.1 10 1E

r
δ

δ
 = ⋅ + 
 

 (8) 

where E0 is given in V/m, δ equals 1 for 25°C and 101325 Pa and r is electrode 

radius given in cm. 

It is important to note that in general a corona discharge problem needs an 

appropriate treatment of two distinct zones of the domain. In immediate vicinity 
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of the corona electrode an ionisation zone occurs. The charge carriers are pro-

duced there, but the dimension of the zone is negligible compared to the domain 

size. It is therefore usually neglected in EHD simulations where an injection law 

accounts for charge production instead. The remaining area is called drift zone 

due to charge transport phenomena taking place in its volume. Most studies are 

focused on solving governing equations (1) and (3) in the drift zone only and 

such approach was adopted in present work. 

The complete set of boundary conditions resulting from the above consid-

erations is summarized in Table 1. with boundary names according to Fig. 1. 

Table 1. Boundary conditions 

Boundary Potential BC Space charge density BC 

A Dirichlet charge injection 

B Dirichlet zero diffusive flux 

C zero total flux zero diffusive flux 

D zero total flux zero total flux 

3. Solution 

The system of equations (1) and (3) was solved with MOOSE (Multiphys-

ics Object-Oriented Simulation Environment) Framework by Idaho National 

Laboratory available in public domain on GNU LGPL license [19]. It is an envi-

ronment developed to efficiently solve coupled systems of nonlinear partial dif-

ferential equations by means of Jacobian-Free Newton-Krylov (JFNK) methods. 

MOOSE being fairly high-level software relies heavily on more basic library 

libMesh developed at University of Texas [20]. 

MOOSE requires the system of PDEs to be given in a weak form (aka 

variational statement) which comes down to multiplying equations by test func-

tion, integrating them over the domain and applying a divergence theorem. Such 

treatment results in equations containing both domain and boundary integrals. 

The former is responsible for physical phenomena taking place in the bulk of the 

domain and give the basis to formulate MOOSE Kernels while the latter account 

for boundary conditions. From the user’s point of view the main effort is to 

identify Kernels and BCs required for particular system of equations and assign 

them to each variable. The software offers an extensive library of Kernels suit-

able for a wide range of commonly encountered physical mechanisms such as 

diffusion or convection, although some non-typical cases may require a custom 

Kernel to be written by user. The same applies to boundary conditions. 

Besides Kernels and BCs MOOSE offers many other interfaces called Sys-

tems to enable precise control of solution process and to acquire all required 

data from final solution. As examples one can point an ICs System responsible 

for initial conditions, a TimeSteppers System controlling the advance through 
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time in transient solves or Auxiliary Kernels System used for explicit calcula-

tions. 

To enable FEM solution the domain was discretized with 165376 elements 

of 6-node triangular type resulting in 331829 nodes in whole domain. The equa-

tions (1) and (3) were reformulated into weak form and required Kernels were 

identified. It was possible to use ready-made Kernels for diffusion and source 

terms in Poisson equation as well as diffusion term in charge transport equation 

but the Kernel for charge drift term had to be additionally implemented. Regard-

ing boundary conditions there was a need to implement charge injection BC on 

the basis of considerations presented in section 2 as well as zero diffusive flux 

BC. Electric field E and body force F given by equations (2) and (6) respecti- 

vely were defined as auxiliary variables due to their explicit dependence on ϕ 

and ρq and were being calculated directly during solution process. It was  

assumed that fluid under consideration is air with relative dielectric permittivity 

εr = 1, ion mobility μ = 2.1·10
-4

 m
2
V

-1
s

-1
 and diffusivity coefficient of ions  

D = 2.66·10
-5

 m
2
s

-1
 [11]. 

The solution procedure began with calculation of Laplacian distribution 

of electric potential from equation (1) with right hand side set to 0. Subsequently 

the Laplacian distribution of electric field was obtained and used together with 

the value of critical electric field E0 calculated from Peek’s equation to formu-

late a charge injection boundary condition. The main solution was then started 

with a guessed value of A coefficient in charge injection BC. The transient 

solver of Preconditioned Jacobian-Free Newton-Krylov (PJFNK) type was used 

with Lower-Upper (LU) preconditioner. Adding a time derivative and using 

a transient solver ensured a smooth start of the solution procedure and allowed 

gradual evolution towards steady-state with good convergence in each timestep. 

Steady-state detection implemented by default in MOOSE was used to stop 

simulation when relative difference in solution variables in subsequent timesteps 

became smaller than chosen threshold. After reaching the steady-state the aver-

age value of electric field over coronating points on the electrode surface was 

checked and compared with Peek’s value. A custom postprocessor was required 

to calculate the average electric field only from points where Laplacian field has 

the value greater than E0. If the average and critical value of electric field were 

different, the A coefficient in space charge BC was corrected and the simulation 

was performed again. Otherwise the solution procedure could be stopped since 

all assumptions about charge injection specified in section 2 have been satisfied. 

4. Results and discussion 

The solution of the problem formulated in previous sections are two-

dimensional distributions of electric potential ϕ, electric field E, space charge 

density ρq and body force F presented in Figures 2-6. 



38  R. Gałek 

 

Fig. 2. Distribution of electric potential in V 

The distribution of electric potential is very similar to solution obtained for 

pure electrostatic problem (i.e. Laplacian solution) which suggests that the very 

existence of space charge does not affect the potential field significantly. This 

observation generally remains in compliance with an assumption referred to as 

the Deutsch approximation [21]. The value of electric potential decreases from 

corona electrode to cathode and outer boundaries in a manner quite typical for 

a diffusion mechanism. The shape of the potential isolines however indicates 

that the potential BC on free boundaries may need some further consideration. 

There is no apparent physical reason for the lowest isoline to have significantly 

different shape from other lines. In present work it is clearly caused by zero total 

flux boundary condition on the right edge of the domain, but the shape of the 

lowest isoline indicates that some kind of absorption boundary condition would 

be more appropriate here, as suggested in [11]. 

 

Fig. 3. Distribution of electric field magnitude in V/m 

As might be expected the electric field magnitude has the highest value 

near the corona electrode tip due to high gradient of electric potential in that re-
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gion. Although it decreases rapidly towards cathode, an interelectrode gap is 

still the region of relatively high values of electric field which is required 

to effectively accelerate charge carriers. 

 

Fig. 4. Distribution of space charge density in C/m3 

The space charge density distribution illustrates the fact that the whole 

problem is founded on charge injection phenomenon. The ion cloud originates at 

the very tip of the corona electrode and spans towards cathode due to diffusion 

and charge drift mechanisms. It is important to note that the boundary of the ion 

cloud is clearly visible and the space charge density in the rest of the domain is 

practically 0. Such distribution suggests that body force may be expected only in 

the narrow region near the axis where space charge density values are fairly 

high. 

 

Fig. 5. Distribution of body force x component in N/m3 (x axis pointing right) 
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Fig. 6. Distribution of body force y component in N/m3 (y axis pointing downwards) 

Body force x and y components shown in Fig. 5. and Fig. 6. respectively 

have different distributions but both are concentrated in the region restricted 

by ion cloud. Values of x component are generally smaller and decrease faster 

towards cathode than values of y component. A distinct domination of y com-

ponent is further confirmed by the fact that its distribution differs insignificantly 

from the distribution of the body force magnitude. It may be predicted that such 

distribution of body force will result in jet-like flow of the medium towards 

cathode which would be useful in spot cooling applications where intense heat 

removal is needed at relatively small area. 

5. Conclusion and future work 

The results of numerical modelling of the body force induced by corona 

discharge have been presented. The problem has been defined by the system 

of partial differential equations and solved with a set of appropriate boundary 

conditions by means of MOOSE Framework. A particular stress has been placed 

upon the proper formulation of charge injection boundary condition. Obtained 

results allow to analyze  potential, electric field, space charge density and body 

force distributions related with corona discharge phenomenon. 

Future work should use the solution from current study in Navier-Stokes 

equations to investigate the flow field induced by the body force. It will allow 

an assessment of potential real-world applications of corona discharge device 

with given geometry and parameters for spot cooling or similar purposes related 

with jet flow of the medium. 
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MODELOWANIE NUMERYCZNE SIŁY MASOWEJ GENEROWANEJ 

PRZEZ WYŁADOWANIE KORONOWE 

S t r e s z c z e n i e  

Artykuł prezentuje podstawy teoretyczne oraz wyniki modelowania numerycznego zjawiska 

wyładowania koronowego w celu wyznaczenia wartości siły masowej wymuszającej przepływ 

medium, w którym to wyładowanie zachodzi. Rozwiązywany jest układ dwóch równań różnicz-

kowych cząstkowych, gdzie niewiadomymi są wartości potencjału elektrycznego ϕ oraz gęstości 

przestrzennej ładunku ρq. Pierwsze z równań ma postać równania Poissona z laplasjanem operują-

cym na wartości potencjału oraz członem źródła zależnym od gęstości przestrzennej ładunku 

i przenikalności elektrycznej ośrodka. Drugie z równań to równanie ciągłości prądu, gdzie jako 

składniki gęstości prądu elektrycznego uwzględniono człon odpowiedzialny za dyfuzję nośników 

ładunku oraz człon opisujący ich dryf w polu elektrycznym. Szczególną uwagę zwrócono na wa-

runek brzegowy przestrzennej gęstości ładunku ze względu na jego pośredni charakter. Geometria 

problemu zakłada, że wyładowanie koronowe zachodzi na anodzie w kształcie ostrza, podczas 

gdy katodę stanowi uziemiona płaska płytka. Taka geometria pozwala na uproszczenie analizy do 

przypadku rozpatrywanego w dwuwymiarowych współrzędnych kartezjańskich przy założeniu, że 

płaszczyzna przekroju znajduje się odpowiednio daleko od bocznych krawędzi ostrza. Do rozwią-

zania układu równań wykorzystano środowisko MOOSE (Multiphysics Object-Oriented Simula-

tion Environment) Framework udostępnione w domenie publicznej na licencji GNU LGPL przez 

Idaho National Laboratory. Przedstawione wyniki obejmują dwuwymiarowe rozkłady wartości 

potencjału i pola elektrycznego, gęstości przestrzennej ładunku oraz siły masowej w medium ota-

czającym elektrody. 

 

Słowa kluczowe: wiatr jonowy, elektrostatyczny akcelerator płynu, przepływ elektrohydrodyna-

miczny, metoda elementów skończonych, układ równań różniczkowych 
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