Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Geometric parameters of a ribbon impeller were optimized on the basis of numerical calculations obtained from the solution of our own 3D/2D hybrid model. The optimization was made taking into account mixing power and homogenization time for ribbon impellers with a different number of ribbons and width operating in a laminar motion for Newtonian fluid. Due to minimum mixing energy required to stir a unit volume of liquid the most efficient impeller appeared to be that with one ribbon of width equal to 0.1 to 0.15 of the mixing vessel diameter. Impellers with more than one ribbon needed much higher mixing power but did not increase significantly secondary circulation in the vessel. These impellers increased first of all primary circulation, i.e. they increased only circular motion of liquid in the vessel.
Czasopismo
Rocznik
Tom
Strony
491--502
Opis fizyczny
Bibliogr. 41 poz., tab.
Twórcy
autor
- Ł ód ź University of Technology, Faculty of Process and Environmental Engineering, ul. Wólcza ń ska 213, 90-924 Łódź , Poland
autor
- Ł ód ź University of Technology, Faculty of Process and Environmental Engineering, ul. Wólcza ń ska 213, 90-924 Łódź , Poland
Bibliografia
- 1. Ameur, H., Kamla, Y., Sahel, D., 2017. Performance of helical screw impellers for mixing of viscous liquids in cylindrical reactors. Chemistry Select, 2, 1891-1894. DOI: 10.1002/slct.201602072.
- 2. Ameur, H., 2015. Energy efficiency of different impellers in stirred tank reactors. Energy, 93, 1980-1988. DOI: 10.1016/j.energy.2015.10.084.
- 3. Anne-Archard D., Marouche M., Boisson H.C., 2006. Hydrodynamics and Metzner–Otto correlation in stirred vessels for yield stress fluids. Chem. Eng. J., 125, 15–24. DOI: 10.1016/j.cej.2006.08.002.
- 4. Bakker A., Gates L.E., 1995. Properly choose mechanical agitators for viscous liquids. Chem. Eng. Progress, 91, 25-34.
- 5. Carreau P.J., Patterson I., Yap C.Y., 1976. Mixing of viscoelastic fluids with helical-ribbon agitators - I. Mixing time and flow patterns. Can. J. Chem. Eng., 54, 135-142. DOI: 101002/cjce.5450540303.
- 6. Coyle C.K., Hirschland H.E., Michel B.J., Oldshue J.Y., 1970. Mixing in viscous liquids. AIChE J., 16, 903-906. DOI: 10.1002/aic.690160608.
- 7. Curran S.J., Hayes R.E., Afacan A., Williams M., Tanguy P., 2000. Experimental mixing of a yield stress fluid in a laminar stirred tank. Ind. Eng. Chem. Research, 39, 195–202. DOI: 10.1021/ie990468e.
- 8. Delaplace G., Leuliet J.C., Relandeau V., 2000. Circulation and mixing times for helical ribbon impellers. Review and experiments. Exp. Fluids, 28, 170-182. DOI: 10.1007/s003480050.
- 9. Delaplace G., Guerin R., Leuliet J.C., Chhabra R.P., 2006. An analytical model for the prediction of power consumption for shear-thinning fluids with helical ribbon and helical screw ribbon impellers. Chem. Eng. Sci., 61, 3250–3259. DOI: 10.1016/j.ces.2005.11.069.
- 10. Gelus M., Le Cardinal G., Germain E., 1979. Choix d'un agitateur lorsque la viscosité varie de l centipoise á 2000. Entropie, 88, 54-59.
- 11. Guerin P., Carreau P.J., Patterson W.I., Paris J., 1984. Characterization of helical impellers by circulation times. Can. J. Chem. Eng., 62, 301-309. DOI: 10.1002/cjce.5450620302.
- 12. Harvey A.D., Lee C.K., Rogers S.E., 1995. Steady-state modeling and experimental measurements of a baffled impeller stirred tank. AIChE J., 41, 2177-2186. DOI: 10.1002/aic.690411002.
- 13. He Y., Zhang L., Zhang J., Bao J., 2014a. Helically agitated mixing in dry dilute acid pretreatment enhances the bioconversion of corn stover into ethanol. Biotechnol. Biofuels, 7, 1. DOI: 10.1186/1754-6834-7-1.
- 14. He Y., Zhang J. J, Bao J., 2014b. Dry dilute acid pretreatment by co-currently feeding of corn stover feedstock and dilute acid solution without impregnation. Bioresour. Technol., 1, 360–364. DOI: 10.1016/j.biortech.2014.02.074.
- 15. Hou W., Zhang L., Zhang, J. Bao J., 2016. Rheology evolution and CFD modeling of lignocellulose biomass during extremely high solids content pretreatment. Biochem. Eng. J., 105, 412–419. DOI: 10.1016/j.bej.2015.10.021.
- 16. Kaminoyama M., Watanabe M., Nishi K. and Kamiwano M., 1999. Numerical simulation of local heat transfer coefficient in stirred vessel with impeller for highly viscous fluids. J. Chem. Eng. Japan, 32, 23-30. DOI: 10.1252/jcej.32.23.
- 17. Nagata S., Yanagimoto M., Yokoyama T., 1956. Studies on the mixing of high viscous liquids. Memoirs of the Faculty of Engineering, Kyoto University, 18, 444-460.
- 18. Kuncewicz Cz., Pietrzykowski M., 2010. A 3D/2D hybrid model for flat blade impellers operating in the laminar flow. Chem. Proc. Eng., 31, 289-302.
- 19. Kuncewicz C. 2012. Mieszanie cieczy wysokolepkich. Podstawy procesowe. Wydawnictwo Politechniki Łódzkiej (in Polish).
- 20. Kuncewicz Cz. Rieger F., M. Pietrzykowski, J. Stelmach, 2013. 3D/2D hybrid model for ribbon impellers operating in laminar regime. Chem. Eng. Process. Process Intensif., 73, 50-58. DOI: 10.1016/j.cep.2013.08.003.
- 21. Liu W., Wang Y.M., Yu Z.C., Bao J., 2012. Simultaneous saccharification and microbial lipid fermentation of corn stover by oleaginous yeast Trichosporon cutaneum. Bioresour. Technol., 118, 13–18. DOI: 10.1016/j.biortech.2012.05.038.
- 22. Obraniak A., Gluba T., 2012. Model of energy consumption in the range of nucleation and granule growth in drum granulation bentonite. Physicochemical Problems of Mineral Processing, 48,1, 121-128.
- 23. Ohta M., Kuriyama M., Arai K., Saito S., 1985. A two-dimensional model for the secondary flow in an agitated vessel with anchor impeller. J. Chem. Eng. Japan, 18, 81-84. DOI: 10.1252/jcej.18.81.
- 24. Rieger F., Novak V., Havelkova D., 1986. Homogenization efficiency of helical ribbon agitators. Chem. Eng. J., 33, 143-150. DOI: 10.1016/0300-9467(86)80013-2.
- 25. Robinson M., Cleary P.W., 2012. Flow and mixing performance in helical ribbon mixers. Chem. Eng. Sci., 84, 382–398. DOI: 10.1016/j.ces.2012.08.044.
- 26. Shiue S.J., Wong C.W., 1984. Studies on homogenization efficiency of various agitators in liquid blending. Can J. Chem. Eng., 62, 602-609. DOI: 10.1002/cjce.5450620505.
- 27. Soliman M.G., 1985. Agitation de fluides visqueux pseudoplastiques par un double ruban helicoïdal. Thesis, I.N.P. Toulouse, France.
- 28. Stręk F., 1981. Mieszanie i mieszalniki. WNT Warszawa.
- 29. Takahashi K., Sasaki M., Arai K., 1982. Effects of geometrical variables of helical ribbon impellers on mixing of highly viscous Newtonian liquids. J. Chem. Eng. Japan, 15, 217-224. DOI: 10.1252/jcej.15.217.
- 30. Takahashi K., Yokota T., Konno H.,1988. Mixing of pseudoplastic liquid in a equipped with a variety of helical ribbon impellers. J. Chem. Eng. Japan, 21, 63-68. DOI: 10.1252/jcej.21.63.
- 31. Takahashi K., Iwaki M., Yokota T., Konno H., 1989. Circulation time for pseudoplastic liquids in a vessel equipped with a variety of helical ribbon impellers. J. Chem. Eng. Japan, 22, 413-418. 10.1252/jcej.22.413.
- 32. Takahashi K., Yokota T., Furukawa T., Harada K., 1994. Mixing of highly viscous newtonian liquid in a helical ribbon agitated vessel at various liquid depths. J. Chem. Eng. Japan, 27, 244-247. DOI: 10.1252/jcej.27.244.
- 33. Takahashi K., Sugawara N., Takahata Y., 2015. Mixing time in an agitated vessel equipped with large impeller. J. Chem. Eng. Japan, 48, 513-517. DOI: 10.1252/jcej.14we192.
- 34. Thiele H., 1972. Strömmung und Leistungbedarf beim Rühren Newtonscher Flüssigkeiten mit Anker, Blatt-und
- 35. Turbinenrühren in laminar Bereich. Dissertation, Technische Universität Berlin.
- 36. Ulbrecht J., Carreau P., 1985. Mixing of Liquids by Mechanical Agitation, Chapter 4. Gordon and Breach, New York.
- 37. Wang Xiao, Fradette L., Takenaka K., Tanguy Ph., 2012. Effect of operating parameters on the mixing performance of the superblend coaxial mixer. Ind. Eng. Chem. Research, 51, 1826-1833. DOI: 10.1021/ie200707n.
- 38. Wu B.X., 2012. CFD simulation of mixing for high-solids anaerobic digestion. Biotechnol. Bioeng., 109, 2116–2126. DOI: 10.1002/bit.24482.
- 39. Zhang J., Chu D.Q., Huang J., Yu Z.C., Dai G.C., Bao J., 2010. Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor. Biotechnol. Bioeng., 105, 718–728. DOI: 10.1002/bit.2259.
- 40. Zhang L., Zhang J., Li C., Bao J., 2014. Rheological characterization and CFD modelling of corn stover–water mixing system at high solids loading for dilute acid pretreatment. Biochem. Eng. J., 90, 324–332. DOI: 10.1016/j.bej.2014.06.018.
- 41. Zhao K., Qiao Q.A., Chu D.Q., Gu H.Q., Dao T.H., Zhang J., Bao J., 2013. Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2. Bioresour. Technol., 135, 481–489. DOI: 10.1016/j.biortech.2012.09.063.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b183ae73-de52-4532-a84d-8dc422173323
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.