PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of heat transfer in building partitions with the use of computational fluid dynamics tools

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza transportu ciepła w przegrodach budowlanych w wykorzystaniem narzędzi do obliczeniowej mechaniki płynów CFD
Języki publikacji
EN
Abstrakty
EN
The article presents the mechanisms of heat exchange in building partitions along with a description of the phenomena occurring there.The methods of heat transport on selected examples of the construction of sandwich building walls were presented and discussed. A review of the methods allowing to determine the heat fluxvalue by means of analytical methods and simulations based on numerical analyzes was carried out. The methodology of solving thermal problems has been presented, indicating the complexity of the phenomena occurring at the contact points of surfaces, for which the correct characteristics should be selected in more than one selected form of determining temperature distributions.Heat transport simulation was performed in ANSYS Fluent 2020 R2 software. The value of the heat flux density flowing through the outer wall of a single-family house located in Lublin, Poland was analytically determined. Three different structural wall solutions were adopted: one, two and three-layer. The obtained results were presented in a tabular manner, allowing for a clear verification of the correctness of the calculations performed with both selected methods.
PL
W artykule przedstawiono mechanizmy wymiany ciepła w przegrodach budowlanych wraz z opisem zjawisk tam zachodzących. Przybliżonoi omówiono sposoby transportu ciepła na wybranych przykładach konstrukcji warstwowych ścian budowlanych. Przeprowadzono przegląd metod pozwalających na wyznaczenie wartości gęstości strumienia ciepłana drodze metod analitycznych oraz symulacji opartych na analizach numerycznych. Przedstawiono metodologięrozwiązywania zagadnień cieplnych wskazując na złożoność zjawisk zachodzących w miejscach kontaktu powierzchnidla których poprawnej charakterystyki należy przyjąć więcej niż jedną wybraną formę wyznaczenia rozkładów temperatury. Wykonano symulację transportu ciepła w oprogramowania ANSYS Fluent 2020 R2 oraz wyznaczono analitycznie wartość gęstości strumienia ciepła przepływającego przez ścianę zewnętrzną domu jednorodzinnego posadowionego w Lublinie w Polsce. Przyjęto trzy różne pod względem konstrukcyjnym rozwiązania ścian: jedno, dwu i trój warstwowe. Otrzymane wyniki przedstawione zostały w sposób tabelaryczny umożliwiając przejrzystą weryfikację poprawności wykonanych obliczeń obydwoma wybranymi metodami.
Rocznik
Strony
48--51
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
  • Lublin University of Technology, Fundamentals of Technology Faculty, Lublin, Poland
  • Lublin University of Technology, Departmentof Electronics and Information Technology, Lublin, Poland
  • Lublin University of Technology, Fundamentals of Technology Faculty, Lublin, Poland
Bibliografia
  • [1] Barnat-Hunek D., Lagod G., Klimek B.: Evaluation of the contact angle and frost resistance of hydrophobised heat-insulating mortars with polystyrene.AIP Conference Proceedings 1866, 2017, 040004.
  • [2] Chong H., Wang H., Li E.: Update-grid reanalysis method based on NS-FEM for 3D heat transfer problems. Eng. Anal. Bound. Elem. 95/2018,142–153, https://doi.org/10.1016/j.enganabound.2018.07.010].
  • [3] Dz.U. 2013 poz. 926.: Rozporządzenie Ministra Transportu, BudownictwaiGospodarki Morskiej z dnia 5 lipca 2013 r.
  • [4] Furmański P., Domański R.: Wymiana ciepła. Przykłady obliczeń i zadania. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2002.
  • [5] LiZ. C., Cui X. Y., Cai Y.: Analysis of heat transfer problems using a novel low-order FEM based on gradient weighted operation. Int. J. Therm. Sci. 132/2018, 52–64, [https://doi.org/10.1016/j.ijthermalsci.2018.05.039].
  • [6] PN-82/B-02402.: Ogrzewnictwo - Temperatury ogrzewanych pomieszczeń w budynkach.
  • [7] PN-EN 12831:2006.: Instalacje ogrzewcze w budynkach. Metoda obliczania projektowego obciążenia cieplnego.
  • [8] PN-EN ISO 6946.: Komponenty budowlane i elementy budynku Opór cieplny i współczynnik przenikania ciepła Metoda obliczania.
  • [9] Raczkowski A., Suchorab Z., Czechowska-Kosacka A.: Computational fluid dynamics simulation of an earth-air heat exchanger for ventilation system, AIP Conference Proceedings1866, 2017, 040032.
  • [10] Saleem A., Farooq S., Karimi I. A., Banerjee R.: Wall superheat at the incipient nucleate boiling condition for natural and forced convection: A CFD approach, Comput. Chem. Eng. 134/2020, 106718, [https://doi.org/10.1016/j.compchemeng.2019.106718].
  • [11] Sheikholeslami M., Ghasemi A.: Solidification heat transfer of nanofluidin existence of thermal radiation by means of FEM. Int. J. Heat Mass Transf. 123/2018, 418–431.
  • [12]Takabatake K., Sakai M.: Flexible discretization technique for DEM-CFD simulations including thin walls.Adv. Powder Technol. 31(5)/2020,1825–1837, [https://doi.org/10.1016/j.apt.2020.02.017].
  • [13] Wiśniewski S., Wiśniewski T. S.: Wymiana ciepła. Wydawnictwa Naukowo-Techniczne, Warszawa 2000.
  • [14] Wójcicka–Migasiuk D.: Analiza wymiany ciepła w ścianach słonecznych. Lubelskie Towarzystwo Naukowe, Lublin 2008.
  • [15] Żenczykowski W.: Budownictwo ogólne. Problemy fizyki budowli i instalacje. Arkady, Częstochowa 1987
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b182d65e-b98f-4458-9dd1-ce7fdeae7890
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.