PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and performance of steel slag and recycled brick aggregate modified concrete under the background of solid waste application

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Permeable concrete has the characteristics of breathability, permeability, and high heat dissipation. To improve its mechanical and frost resistance properties, this study optimized the preparation and performance of permeable concrete by adding materials to improve its performance. The performance analysis validate that epoxy resin owns a filling effect on the pores of permeable concrete. The internal curing agent, high water absorbent resin, has a good water absorption effect. The synergistic effect of these two increases the density and compressive strength of permeable concrete. When the two contents are 0.5%, the maximum compressive strength of modified permeable concrete at 7 and 28 days was 15.62 and 17.97 MPa, respectively. Under the action of freeze-thaw cycles, its mass loss rate show an upward trend By comparison, epoxy resin and high water absorbent resin are beneficial for improving the frost resistance of permeable concrete. The minimum value of relative dynamic modulus of elasticity remains stable at over 80%, and the loss rate of dynamic modulus of elasticity is all below 0.4. However, the influence of epoxy resin and SAP on the mass loss rate is relatively small, and the mass loss of all experimental groups is controlled below 2.5%. The binomial Fourier function model is the best predictive model for permeable concrete under freeze-thaw cycles. This study has positive significance for improving the performance of permeable concrete and maintaining the sustainable development of ecological cities.
Rocznik
Strony
373--386
Opis fizyczny
Bibliogr. 17 poz. il., tab.
Twórcy
autor
  • School of Resources Environment and Architectural Engineering, Chifeng University, Chifeng, China
Bibliografia
  • [1] Z. Wu, Y. Zhao, and N. Zhang, “A literature survey of green and low-carbon economics using natural experiment approaches in top field journal”, Green and Low-Carbon Economy, vol. 1, no. 1, pp. 2-14, 2023, doi: 10.47852/bonviewGLCE3202827.
  • [2] Y. Zheng, Y. Zhang, and P. Zhang, “Methods for improving the durability of recycled aggregate concrete: A review”, Journal of Materials Research and Technology, vol. 15, no. 6, pp. 6367-6386, 2021, doi: 10.1016/j.jmrt.2021.11.085.
  • [3] A.M. Usman and M.K. Abdullah, “An assessment of building energy consumption characteristics using analytical energy and carbon footprint assessment model”, Green and Low-Carbon Economy, vol. 1, no. 1, pp. 28-40, 2023, doi: 10.47852/bonviewGLCE3202545.
  • [4] J. Xiao, Y. Tang, H. Chen, H. Zhang, and B. Xia, “Effects of recycled aggregate combinations and recycled powder contents on fracture behavior of fully recycled aggregate concrete”, Journal of Cleaner Production, vol. 366, art. no. 132895, 2022, doi: 10.1016/j.jclepro.2022.132895.
  • [5] C.D.A. Loureiro, C.F.N. Moura, M. Rodrigues, F.C.G. Martinho, H.M.R.D. Silva, and J.R.M. Oliveira, “Steel slag and recycled concrete aggregates: replacing quarries to supply sustainable materials for the asphalt paving industry”, Sustainability, vol. 14, no. 9, pp. 1-31, 2022, doi: 10.3390/su14095022.
  • [6] R.B. Tangadagi, M. Manjunatha, A. Bharath, and S. Preethi, “Utilization of steel slag as an eco-friendly material in concrete for construction”, Journal of Green Engineering, vol. 10, no. 5, pp. 2408-2419, 2020.
  • [7] L. Boquera, J. Ramon Castro, A.G. Fernandez, A. Navarro, A.L. Pisello, and L.F. Cabeza, “Thermo-mechanical stability of concrete containing steel slag as aggregate after high temperature thermal cycles”, Solar Energy, vol. 239, no. 6, pp. 59-73, 2022, doi: 10.1016/j.solener.2022.04.062.
  • [8] J. Rosales, F. Agrela, L.D. José, and C. Manuel, “Alkali-activated stainless steel slag as a cementitious material in the manufacture of self-compacting concrete”, Materials, vol. 14, no. 14, art. no. 3945, 2021, doi: 10.3390/ma14143945.
  • [9] J.C.M. Ho, Y. Liang, Y.H. Wang, M.H. Lai, Z. C. Huang, D. Yang, and Q.L. Zhang, “Residual properties of steel slag coarse aggregate concrete after exposure to elevated temperatures”, Construction and Building Materials, vol. 316, art. no. 125751, 2022, doi: 10.1016/j.conbuildmat.2021.125751.
  • [10] X. Zhuang, Y. Liang, J.C.M. Ho, Y.H. Wang, M. Lai, X. Li, Z. H. Xu, and Y. Xu, “Post-fire behavior of steel slag fine aggregate concrete”, Structural Concrete, vol. 23, no. 6, pp. 3672-3695, 2022, doi: 10.1002/suco.202100677.
  • [11] N.S. Piro, A. S. Mohammed, S.M. Hamad, R. Kurda, and B.S. Qader, “Multifunctional computational models to predict the long-term compressive strength of concrete incorporated with waste steel slag”, Structural Concrete, vol. 24, no. 2, pp. 2093-2112, 2023, doi: 10.1002/suco.202200023.
  • [12] N.S. Piro, A. Mohammed, S.M. Hamad, and R. Kurda, “Artificial neural networks (ANN), MARS, and adaptive network-based fuzzy inference system (ANFIS) to predict the stress at the failure of concrete with waste steel slag coarse aggregate replacement”, Neural Computing and Applications, vol. 35, no. 18, pp. 13293-13319, 2023, doi: 10.1007/s00521-023-08439-7.
  • [13] C.D.A. Loureiro, C.F.N. Moura, M. Rodrigues, F.C.G. Martinho, H.M.R.D. Silva, and J.R.M. Oliveira, “Steel slag and recycled concrete aggregates: Replacing quarries to supply sustainable materials for the asphalt paving industry”, Sustainability, vol. 14, no. 9, 2022, doi: 10.3390/su14095022.
  • [14] Z. Li, A. Shen, X. Yang, Y.C. Guo, and Y.W. Liu, “A review of steel slag as a substitute for natural aggregate applied to cement concrete”, Road Materials and Pavement Design, vol. 24, no. 2, pp. 537-559, 2023, doi: 10.1080/14680629.2021.2024241.
  • [15] V. Václavík, M. Ondová, T. Dvorský, T. Eštoková, M. Fabiánová, and L. Gola, “Sustainability potential evaluation of concrete with steel slag aggregates by the LCA method”, Sustainability, vol. 12, no. 23, 2020, doi: 10.3390/su12239873.
  • [16] J. Rosales, F. Agrela, J.A. Entrenas, and M. Cabrera, “Potential of stainless steel slag waste in manufacturing self-compacting concrete”, Materials, vol. 13, no. 9, 2020, doi: 10.3390/ma13092049.
  • [17] S.S.C. Alharishawi, N. Rajaa, and A.R. Jabur, “Laboratory tests of solid and hollow concrete beams made with glass waste”, Archives of Civil Engineering, vol. 69, no. 4, pp. 5-20, 2023, doi: 10.24425/ace.2023.147644.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b182627c-7d9a-4e38-bf93-4a59b934ce37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.