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Abstract. The occurrence of partial shading in solar power systems presents a substantial challenge with widespread implications, sparking
extensive research, notably in the field of maximum power point tracking (MPPT). This study emphasizes the critical process of accurately
tracking the maximum power points with the characteristic curves of photovoltaic (PV) modules under real-time, diverse partial shading patterns.
It explores the various stages of the tracking process and the methodologies employed for optimization. While conventional methods show
effectiveness, they often fall short in swiftly and accurately tracking maximum power points with minimal errors. To address this limitation, this
research introduces a novel machine learning approach known as adaptive reinforcement learning with neural network architecture (ARL-NNA)
for MPPT. The results obtained from ARL-NNA are compared with existing algorithms using the same experimental data. Furthermore, the
outcomes are validated through different factors and processing time measurements. The findings conclusively demonstrate the efficacy and
superiority of the proposed algorithm in effectively tracking maximum power points in PV characteristic curves, providing a promising solution for
optimizing solar energy generation in partial shading patterns. This study significantly impacts various realms of electrical engineering including
power engineering, power electronics, industrial electronics, solid-state electronics, energy technology, and other related field of engineering and
technology.
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1. INTRODUCTION

The diminishing reserves of conventional energy sources used
for electricity generation are closely linked to the deteriora-
tion of our natural resource ecosystem. Consequently, solar en-
ergy systems have long been regarded as a dependable means
of satisfying both energy demand and efficiency requirements.
According to the International Energy Agency (IEA) [1], the
global solar energy generation accelerated by 270 terawatts in
2022 aligning with the estimated Net Zero Emissions target of
2030. However, the widespread adoption of solar energy sys-
tems faces challenges in many regions due to factors such as
cloud cover, snowfall, continuous rainfall, localized hotspots,
obstructions from buildings, interference from birds, and waste
accumulation. Despite its integration into various sectors, in-
cluding engineering applications, residential use, industrial ap-
plications, commercial enterprises, and even water desalination,
solar energy systems come with several limitations.

Figure 1 illustrates the leading nations in solar installation
worldwide and highlights how their presence contributes to con-
ditions of partial shading [2–5].

Likewise, it can be seen in Fig. 1 that Faroe Island, Denmark,
experiences particularly challenging cloudy conditions, with an
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Fig. 1. Survey of solar installation and affected range

average of only 2.4 hours of sunshine per day and a mere 840
hours of annual sunshine [6]. Moving to the state of Megha-
laya in India, both Mawsynram and Cherrapunji are noteworthy
for their exceptionally high annual rainfall, which averages a
staggering 11 871 millimeters [7]. In the mountainous regions
of north-western Japan, a long-standing climatic feature is the
annual snowfall, which can accumulate to a remarkable depth
of up to 125 feet [8, 9].

Harnessing energy from natural light sources using photo-
voltaic (PV) modules stands as the most prevalent means of
electricity generation. In this process, light energy undergoes
conversion into electrical energy. PV modules primarily rely
on fundamental parameters like solar illumination and temper-

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150112, 2024 1

https://orcid.org/0000-0003-1073-9768
mailto:leelavathi@student.tce.edu


M. Leelavathi and V. Suresh Kumar

ature. However, the emergence of global warming and the ever-
fluctuating and unstable meteorological conditions have led to
frequent variations in these basic parameters. Consequently, the
performance of PV modules is susceptible to inaccuracies in
power generation. Moreover, inconsistent power output can dis-
rupt the continuous supply of electricity to the energy load.
Therefore, it becomes crucial to analyze PV module perfor-
mance under various partial shading scenarios. Before delving
into the analysis of partial shading effects, it is essential to
extract unknown electrical parameters of PV modules. These
parameters are typically determined through an optimization
process or in analytical methods, even in the face of changing
meteorological conditions [10].

In addition to the unknown electrical parameters, various
partial shading patterns significantly impact the performance
of PV modules. Partial shading can occur due to diverse fac-
tors, including the movement of cloud patterns, shading from
trees, buildings, and adjacent PV modules, the presence of bird
droppings, dust particles, damaged or broken PV cells, snow-
fall, and rain. Moreover, some research endeavors specifically
explore the array of partial shading patterns occurring under
different weather conditions. Sudden shifts in meteorological
conditions can also lead to fluctuations in the unknown electri-
cal parameters, consequently affecting the output values of PV
modules [11].

These fluctuations in output values can have repercussions,
potentially causing variations in the performance of electrical
appliances connected to the PV modules or even causing dam-
age. To ensure that the maximum output values of PV modules
are consistently achieved, the maximum power point tracking
(MPPT) [12–15] technique, based on optimization processes, is
employed. This technique remains effective even in the face of
changing meteorological conditions or partial shading patterns.
The output values of PV modules exhibit significant changes,
with characteristic curves featuring both global maximum and
local minimum peak points. The MPPT optimization process
can be categorized into three distinct groups: classical algo-
rithms [16, 17], bio-inspired algorithms [18–24], and soft com-
puting algorithms [25–30].

Classical MPPT [16,17] algorithms like perturb and observe
(P&O), incremental conductance (InC), constant voltage (CV),
and hill-climbing (HC), and coexist with bio-inspired [18–24]
counterparts such as particle swarm optimization (PSO), genetic
algorithm (GA), flower pollination (FP), artificial bee colony
(ABC), and cuckoo search (CS). These algorithms are designed
to identify optimal points on characteristic curves but often face
challenges such as oscillations and fluctuating results. Addition-
ally, soft computing techniques [25–30] like fuzzy logic control
(FLC), artificial neural networks (ANN), deep learning (DL),
and machine learning (ML) contribute to MPPT capabilities,
although they may exacerbate oscillation issues. Recently, rein-
forcement learning (RL) has emerged as a promising approach
in the optimization processes of the machine learning (ML) do-
main, specifically excelling in tasks such as global maximum
point tracking, albeit with essential considerations of stability
and consistency. The choice of technique depends on specific
application contexts and requirements.

In summary, the previous research work has highlighted the
significance of identifying the maximum peak point in PV mod-
ules subjected to various partial shading patterns and using var-
ious optimization techniques including machine learning meth-
ods. Due to various partial shading patterns, the parameters
like voltage, current, and power values of the PV module sig-
nificantly change. Likewise, the interconnected real-time appli-
cations like grid, residential, commercial, and industrial con-
nections lead to a mismatching loss. This mismatching loss
surrounds a huge power loss. In PV modules, the impact of
partial shading conditions often poses a challenge, and conven-
tional MPPT algorithms frequently prove insufficient in pre-
cisely tracking the maximum power point. This is particularly
evident in situations characterized by partial shading or fluc-
tuating conditions. Most of the existing algorithms are reliant
on iterative methods and hence struggle to swiftly identify new
global maximum points, leading to inconsistent readings. More-
over, existing soft computing algorithms for MPPT in partially
shaded settings can be computationally intensive.

To address these challenges, this work proposes an innova-
tive approach that combines reinforcement learning (RL) with
a neural network architecture (NNA) algorithm from machine
learning. This novel idea leverages RL state, action, and reward
parameters along with the capabilities of NNA. The method
holds promise for achieving more precise and efficient max-
imum power point tracking (MPPT). It can adapt quickly to
changing conditions and has the potential to deliver superior
results in the quest for tracking the maximum power point.

Moreover, this research introduces a novel approach involving
dual neural network architecture (NNA) to enhance data train-
ing and optimization. In this approach, the NNA is dedicated to
collecting data points that closely align with the actual input,
ensuring greater accuracy in the learning process and also the
NNA plays a vital role by identifying and filtering out residual
values that significantly deviate from the actual input, thereby
reducing the storage burden, especially within the action pa-
rameter. The culmination of this innovative approach lies in the
careful design and optimization of the reward function. This
component holds a pivotal role in reinforcement learning algo-
rithms, and in this study, it was customized to select the most
appropriate reward values, ultimately shaping the outcome of
the MPPT process.

In summary, this pioneering methodology not only fills a
crucial research gap but also provides a novel solution for the
management and control of photovoltaic modules. The inte-
gration of the adaptive reinforcement learning-neural network
architectures (ARL-NNA) within the machine learning (ML) al-
gorithm exhibits significant promise, particularly in addressing
the intricate challenges posed by diverse partial shading scenar-
ios. The algorithm presented in this study exhibits versatility
across various applications; including text summarization, ma-
chine learning, prediction, and optimization control. Its notable
capability to facilitate automatic decision-making represents a
substantial contribution to the advancement of solar energy sys-
tems.

The proposed research work follows a structured approach as
outlined below:
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1. Parameter extraction: The characteristic curve values of un-
known electrical parameters of the PV module are extracted.

2. ARL-NNA implementation: The implementation of the pro-
posed ARL-NNA within the machine learning (ML) method
is performed.

3. Result and analysis: Proposed approach is evaluated with
existing algorithms to assess its performance, and effective-
ness with a thorough discussion of the outcomes in detail.

4. Validation: Finally, the results are subjected to validation
through different factors and processing time, ensuring the
robustness and reliability of the proposed method.

2. MATERIALS AND METHODS

In this section, the study introduces a mathematical equation
that characterizes the electrical behavior of a PV module. Also,
it delineates the methodology for solving the fundamental PV
module equation by leveraging experimental data. Initially, the
equation for extracting unknown electrical parameters is pre-
sented, followed by the derivation of the current equation of the
PV module using the Newton-Raphson method.

2.1. Mathematical expression of PV module

Here, the objective is to establish the unknown electrical param-
eter of the PV solar cell output current (𝐼𝑜). The 𝐼𝑜 is param-
eterized using Kirchhoff’s laws with photo generation current
(𝐼𝑝ℎ), diode junction current (𝐼𝑑𝑖), and shunt resistance current
(𝐼𝑠ℎ), as in equation (1) [31, 32]. The circuit diagram based on
single-diode equation for the PV module is depicted in Fig. 2.

𝐼𝑜 = 𝐼𝑝ℎ − 𝐼𝑑𝑖 − 𝐼𝑠ℎ , (1)

Fig. 2. Equivalent circuit of PV module

In [31], the shunt resistances 𝐼𝑠ℎ is discarded because it signif-
icantly influences the outcomes of the PV module both in stan-
dard testing conditions (STC) and real-world cases. So, equation
(2) is retrieved as

𝐼𝑜 = 𝐼𝑝ℎ − 𝐼𝑑𝑖 . (2)

From Shockley’s diode junction equation, 𝐼𝑑𝑖 in equation (3)
signifies the current versus voltage (I–V) characteristics curve
equation of a PV solar cell. The 𝐼𝑠𝑠 represents the reverse satu-
ration current, 𝑉𝑜 denotes the load voltage and 𝑁𝑠𝑟 signifies the
number of series connections in the PV module.

𝐼𝑑𝑖 = 𝐼𝑠𝑠

[
exp

(
𝑉𝑜

𝐺𝑁𝑠𝑟

)
−1

]
, (3)

where 𝐺 = 𝑗/𝐾𝐴𝑇𝑐.

𝐺 in the diode thermal voltage is represented as (V), 𝐾 in-
dicates the continual Boltzmann (1.38× 10−23 J/K), 𝑇𝑐 points
cell temperature, 𝐴 = 1 is the identical factor and 𝑗 denotes the
electron charge (1.60×10−19C).

According to the standard testing condition (STC) and real-
world cases, parasitic resistances like series resistance 𝑅𝑠𝑒 and
parallel resistance 𝑅𝑝𝑎 are demonstrated in the output current
equation. Here, 𝑅𝑠𝑒 is highlighted when a large number of PV
systems are placed on the ground surface where 𝑅𝑝𝑎 is neutral.
So, the 𝐼𝑑𝑖 in the equation can be rewritten as in equation (4)

𝐼𝑑𝑖 = 𝐼𝑠𝑠

[
exp

(
𝑉𝑜 + 𝐼𝑜𝑅𝑠𝑒

𝐺𝑁𝑠𝑟

)
−1

]
. (4)

The general PV module output current equation is illustrated
in equation (5), with the series-parallel arrangement in a large
number of PV modules

𝐼𝑜 = 𝑁𝑝𝑎 ∗ 𝐼𝑝ℎ −𝑁𝑝𝑎 ∗ 𝐼𝑠𝑠
[
exp

(
𝑉𝑜 + 𝐼𝑜𝑅𝑠𝑒

𝐺𝑁𝑠𝑟

)
−1

]
(5)

In this work, a single PV module with 36 cells is associated
with the series-parallel relationship. Since the PV module is
propagated in a parallel correlation, the value of 𝑁𝑝𝑎 = 1 [31]
and equation (5) is personalized accordingly as given in equa-
tion (6)

𝐼𝑜 = 𝐼𝑝ℎ − 𝐼𝑠𝑠
[
exp

(
𝑉𝑜 + 𝐼𝑜𝑅𝑠𝑒

𝐺𝑁𝑠𝑟

)
−1

]
. (6)

The 𝐼𝑝ℎ based on the continuous change of solar illumination
𝐺𝑐 in (W/m2), temperature values 𝑇𝑐 in (◦C) along with STC
(𝐺𝑠𝑡 in W/m2 and 𝑇𝑠𝑡 in ◦C) are symbolized in equation (7)

𝐼𝑝ℎ = [𝐼𝑠𝑐 +𝐾𝑖 (𝑇𝑐 −𝑇𝑠𝑡 )] ∗
(
𝐺𝑐

𝐺𝑠𝑡

)
. (7)

Equations (8) and (9) embody the reverse saturation current 𝐼res
and saturation current 𝐼𝑠𝑐, approximately with stable ideality
factor and energy bandgap

𝐼res = 𝐼𝑠𝑠/exp
[(
𝑗𝑉𝑜𝑎

𝐺𝑁𝑠𝑟

)
−1

]
, (8)

𝐼𝑠𝑐 = 𝐼res

[(
𝑇𝑐

𝑇𝑠𝑡

)]3
exp

[(
𝑗𝐸𝑔

𝐴𝐾

) (
1
𝑇𝑠𝑡

)
−
(

1
𝑇𝑐

)]
. (9)

2.2. Unknown electrical parameters (UEP) of PV module

The UEP equation [31] encapsulates vital input parameters, in-
cluding short-circuit current (𝐼𝑠ℎ𝑐), open-circuit voltage (𝑉𝑜𝑝𝑐),
and maximum voltage, current, and power (𝑉max 𝑝 , 𝐼max 𝑝 , and
𝑃max 𝑝). These parameters are computed through equations (10)
to (14). Subsequently, the UEP input parameters are utilized in
the current equation (𝐼𝑜) and seamlessly integrated into the an-
alytical Newton-Raphson method. The ensuing UEP equations
are then extracted through the corresponding procedural steps.
• Short circuit current 𝐼𝑠ℎ𝑐 is positioned at the load terminal.

Hence, 𝐼𝑝ℎ = 𝐼𝑠ℎ𝑐 and𝑉𝑜 = 0 are substituted in equation (5),
where the 𝐼𝑠ℎ𝑐 is shown in equation (10), where saturation
current 𝐼𝑠𝑜 and shunt resistance 𝑅𝑝ℎ.
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𝐼𝑠ℎ𝑐 = 𝐼𝑝ℎ − 𝐼𝑠𝑠
[(

exp
(
𝐼𝑠ℎ𝑐𝑅𝑠𝑒

𝐺

)
−1

)
− 𝐼𝑠𝑜𝑅𝑠𝑒

𝑅𝑝ℎ

]
. (10)

• Open circuit voltage𝑉𝑜𝑝𝑐 in (V) is direct at the load terminal.
Hence, 𝐼𝑠ℎ𝑐 = 0 and𝑉𝑜 =𝑉𝑜𝑝𝑐 are incorporated as presented
in equation (11)

𝐼𝑝ℎ − 𝐼𝑠𝑠
[
exp

(
𝑉𝑜𝑝𝑐

𝐺

)
−1

]
−
𝑉𝑜𝑝𝑐

𝑅𝑝ℎ

= 0, (11)

𝐼𝑠𝑠 =

𝐼𝑝ℎ −
𝑉𝑜𝑝𝑐

𝑅𝑝ℎ

𝑉𝑜𝑝𝑐

𝐺
− 𝑑1

. (12)

• The maximum current (𝐼max 𝑝), as expressed in equation
(13), is established by substituting 𝑉𝑜 = 𝑉max 𝑝 and 𝐼𝑝ℎ =

𝐼max 𝑝 into equation (5). Here, 𝑉max 𝑝 represents the maxi-
mum voltage

𝐼max 𝑝 = 𝐼𝑝ℎ − 𝐼𝑠𝑠
[
exp

(
𝑉max 𝑝 + 𝐼max 𝑝 ∗𝑅𝑠𝑒

𝐺

)
−1

]
−
𝑉max 𝑝 + 𝐼max 𝑝 ∗𝑅𝑠𝑒

𝑅𝑝ℎ

. (13)

• 𝑅𝑠𝑒, the series resistance is calculated using equation
(14) [32], where, diode identity factors (𝐴)

𝑅𝑠𝑒 =


𝐼𝑝ℎ − 𝐼max 𝑝 −

𝑉max 𝑝

𝑅𝑠𝑒

+ 𝐼𝑠𝑠
(
1− 𝑒

𝑉max 𝑝

𝐴

)
𝐼max 𝑝 ∗

𝐼𝑠𝑠

𝐴
𝑒

𝑉max 𝑝

𝐴 + 1
𝑅𝑝ℎ

 . (14)

Finally, the Newton-Raphson method is employed to optimize
the output current 𝐼𝑜 as represented in equation (15). The pa-
rameters like 𝐼𝑜, 𝑅𝑠𝑒, 𝐼𝑝ℎ, 𝐴, and 𝑅𝑝ℎ, as outlined in equations
(10)–(15), are also essential for extracting values that contribute
to accurate system modeling, efficient energy harvesting, and
data-driven decision-making, ultimately enhancing the optimal
performance and reliability of a PV module

𝐼𝑜 =

[
𝐼𝑝ℎ −

(
𝐼𝑠𝑠 [(exp(𝑀) −1) − 𝐼𝑠𝑠 (exp(𝑀))]

−1− 𝐼𝑠𝑠 [(exp(𝑀) −1) − 𝐼𝑠𝑠 (exp(𝑀))]

)]
, (15)

where 𝑀 =
𝑉max 𝑝 + 𝐼max 𝑝𝑅𝑠𝑒

𝐺𝑁𝑠𝑟

.

3. PROPOSED MACHINE LEARNING ALGORITHM

In the current operational background of photovoltaic (PV) mod-
ules, the challenges posed by partial shading patterns prompted
the implementation of a crucial solution which is the maximum
power point tracking (MPPT) technique. This research endeav-
ors to elevate the operational efficiency of PV modules by eval-
uating an advanced novel methodology designed to enhance
the MPPT technique. Grounded in keen observations of solar
power generation under direct sunlight, this innovative approach
aims to address the complexities associated with partial shading
patterns. To further process and optimize this methodology, a
comprehensive machine learning strategy is employed, combin-
ing two distinct approaches. Notably, the research introduces

a novel optimization process, adaptive reinforcement learning
with neural network architecture (ARL-NNA) algorithm, inte-
grated with the MPPT technique. This global strategy is poised
to significantly improve the efficiency and adaptability of PV
modules, marking an important advancement in mitigating the
challenges posed by partial shading patterns.

3.1. Classical Reinforcement learning algorithm

Reinforcement learning (RL) [25–30], introduced by Bellman
in 1957, is a type of machine learning where algorithms learn
by striving for the best rewards. This involves two main aspects:
firstly, representing a policy as a decision-making strategy, and
secondly, adapting and refining strategies over time to improve
decision-making abilities. The primary goal is to intelligently
navigate and understand the context to achieve the best possible
outcomes.

In the RL algorithm, several key parameters, including en-
vironment, agent, state, action, and reward, are integral to its
operation. The essence of the RL algorithm lies in the agent’s
interaction with the environment, wherein it receives input val-
ues and takes actions that result in rewards or output values. The
agent’s learning process is based on observing the current situ-
ation, known as the state, and aiming to make better decisions
in subsequent interactions. The decision-making policy starts
by understanding the environment and agent values, and the
learning process involves key parameters such as state, action,
and reward. This research paper introduces a novel approach
for tracking the maximum power at characteristic curves, em-
ploying adaptive reinforcement learning with neural network
architecture, and innovatively incorporating a duty cycle mech-
anism for increased adaptability and efficiency in maximum
power point tracking (MPPT) under varying environmental con-
ditions.

3.2. Learning process of adaptive RL algorithm

The experimental curves depict the presence of multiple peaks
resulting from various partial shading patterns under different
weather conditions. The process of identifying the global max-
imum power point (GMPP) within the characteristic curve of
the PV module using the ARL-NNA algorithm is illustrated
in Fig. 3. Because of the changing weather conditions, the lo-
cal maximum peak power (LMPP) value is prone to fluctuate.
However, with the ARL-NNA algorithm, the global maximum
points can be tracked in a matter of seconds. Consequently,
this approach contributes to reducing power losses caused by
mismatched conditions.

The primary aim of this article is to establish the effectiveness
of the ARL-NNA algorithm for the effective implementation of
MPPT. NNA are chosen due to their ease of testing and training,
even with limited data. In this approach, NNAs are employed,
with each focusing on a specific aspect of the agent function.
The NNA is dedicated to segmenting the finest reward, while
the other identifies and segments the harmful reward. By doing
so, harmful reward values are effectively eliminated, leaving
only the finest reward value for the determination of the global
maximum power point tracking (GMPPT).
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Fig. 3. Overall block diagram

Furthermore, the significant contribution of this research
work lies in demonstrating that the ARL-NNA algorithm can
yield operational results within a fraction of a second. Addi-
tionally, it is worth noting that no prior research has explored
the testing of the reinforcement learning (RL) framework with a
segmented NNA frame. Moreover, the present study addresses
the GMPPT problem within the RL framework by examining it
under various learning conditions, as outlined below.
• State: In the specific conditions outlined in [27], the MPPT

tracking process involves dealing with unknown electrical
input parameters for PV module values, which are managed
through an iterative method. Prior to commencing the track-
ing process, the output of the iterative method is subjected
to a new step known as the “duty cycle.” This duty cycle
plays a critical role in enhancing the tracking process by
facilitating the discovery of the (Δ𝑃max 𝑝) maximum power
point, which is tracked at zero angles (referred to as P2)
on the characteristic curves as shown in Fig. 3. According
to equation (16), the state value is characterized by 𝐼max 𝑝 ,
𝑉max 𝑝 , and Δ𝑃max 𝑝 . Consequently, this approach leads to
an increase in the maximum power value while reducing
error values. The learning stage for the state function, ’S’ is
defined as follows:

𝑆 =
{
𝜔 𝑗 ,𝑛,Δ𝑃max 𝑝( 𝑗,𝑛) , 𝐼max 𝑝 ∈ [1,2, . . . , 𝑗],

𝑉max 𝑝 ∈ [1,2, . . . , 𝑛]
}
. (16)

In this context, 𝜔 stands for weight, while 𝑗 and 𝑛 denote the
range of the iteration ( 𝑗 , 𝑛 = 1: 𝑉𝑜𝑝𝑐).
• Action: Through building upon the specification of the state

value, the evolution of the ARL-NNA algorithm aims to de-
termine the action value. With the inclusion of the new pro-
cess, i.e. the duty cycle, an optimized power value Δ𝑃max 𝑝

is generated using equation (17)
Δ𝜔 𝑗 ,𝑛 = 𝜔 𝑗 ,𝑛 +Δ𝐷 (duty cycle). (17)

Equation (18) defines the action set 𝐴, where Δ𝜔 𝑗 ,𝑛 represents
the new weight value, Δ𝐷 = 0.01. The values within the set are

as follows: +𝜔 𝑗 ,𝑛 denotes the angle of P1, ‘0’ signifies the angle
of P2 and −𝜔 𝑗 ,𝑛 represents the angle of P3

𝐴 =
{
+𝜔 𝑗 ,𝑛, 0, −𝜔 𝑗 ,𝑛

}
. (18)

The negative (P3) value is discarded, and the agent function
produces the positive (P1) value for the action function. Subse-
quently, a loop iterates until the completion of the statement. The
agent’s role is to reduce the workload associated with locating
the maximum search point and passing the results to the action
function. This process ensures that the action value operates
with higher precision and effective computation.
• Reward: In the process of NNA training for maximum power

point tracking (MPPT), the reward function plays a pivotal
role, dynamically responding to environmental conditions
and agent values. When the agent function, facilitated by the
NNA body, yields a positive (P1) fitness reward, the reward
function retains and utilizes this valuable feedback. Con-
versely, if a harmful (P3) reward is received, it is promptly
sent back to the action function, effectively discarding it.
This selective treatment of negative rewards involves binary
choices, representing positive (P1) as ‘1’ and negative (P3)
as ‘0’. By disregarding the ’0’ value, the reward function
output experiences a boost. In the context of MPPT, the
reward function focuses on processing P1 values, character-
ized by their positive nature on the curves. The execution of
the function, based on the input value of P𝑚𝑎𝑥𝑝 , leads to the
determination of a P2 value (Δ𝑃max 𝑝) when nearing 𝑃max 𝑝 ,
with P2 equating to 0. This P2 value becomes the conclu-
sive result for the tracking process, embodying the GMPPT
value. The output of the reward function encompasses op-
timized maximum current, voltage, and current (Δ𝐼max 𝑝 ,
Δ𝑉max 𝑝 , and Δ𝑃max 𝑝), where the P2 value plays a pivotal
role in the characteristic curves. Throughout NNA process-
ing, the agent function undergoes refinement, contributing
to heightened performance and precision. Equation (19) en-
capsulates the optimal reward function, underscoring the
iterative nature of this process geared towards achieving the
finest GMPPT results

Reward function =


Positive (P1), P > 0,
Zero (P2), P = 0,
Negative (P3), P < 0.

(19)

As shown in equation (20), this iterative process allows the
agent to continuously refine its strategies, ultimately enhancing
its decision-making capabilities over time

Objective function = Δ𝑃max 𝑝 ,P2(Reward). (20)

3.3. NNA training process

The NNA training processes represent three processing lay-
ers [33]. There are two input layers, one single hidden layer,
and one output layer. The input layer encompasses voltage and
current values, while the output layer represents the optimized
maximum power value. During the training process, a single
hidden layer is typically equipped with 𝑁 number of neurons.
However, relying solely on a single hidden layer within the NNA

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150112, 2024 5



M. Leelavathi and V. Suresh Kumar

training model may not suffice for effectively handling nonlinear
data. To address the challenges posed by complex nonlinear data,
NNA training models are employed. The purpose is to simplify
the complexity associated with training such data. In this setup,
the NNA receives and processes the finest reward and harmful
reward value. In the NNA models, a feed-forward neural net-
work (FFNN) is implemented to facilitate quick processing and
generate effective outputs. Additionally, this approach aids in
reducing the complexity encountered during the training of the
data. Throughout the training process, the agent retains the finest
reward as shown in equation (21), while the harmful reward is
discarded, allowing for more effective learning.

The FFNN works under the process

FFNN =

𝑠∑︁
𝑖=1

𝑀

𝑔∑︁
𝑘=1

𝑥 (𝑘,𝑔) ,𝑤 (𝑘,𝑔) , 𝑏 (𝑘,𝑔) , (21)

where 𝑀 = 1, while 𝑤 and 𝑏 represent the weight and bias
value with the range of [1, 2, . . . , (𝑘, 𝑔)] and 𝑥 represents the
PV modules input parameters (𝑉𝑜𝑐𝑝 , 𝐼𝑠𝑐ℎ, 𝐼max 𝑝 , 𝑉max 𝑝 and
𝑃max 𝑝) of the training process.

′ ′∫ = 𝑆𝑎 𝑓 (𝑝), (22)

where ‘∫ ’ represents the sigmoid activation function as shown
in equation (22). The sigmoid activation function is (∫ ) : 𝑆𝑎 𝑓 =

1
1+ e−𝑢

, where e = Euler’s number.
A significant advantage of this approach is its ability to handle

high-dimensional inputs, which is made possible by the absence
of backward connections within the neural network architecture.
The output generated through the trained feed-forward neural
network (FFNN) is deemed accurate, and characterized by min-
imal error values. Additionally, the use of the sigmoid activa-
tion function in the current training set contributes to achieving
highly effective output results, further enhancing the perfor-
mance of the system.

Figure 4 illustrates the operational process of the ARL-NNA
algorithm. The NNA training process involves two input layers,
one hidden layer, and one output layer for each set of NNA. The
two inputs represent the current and voltage values, which are
then processed to produce an output using the iterative method.
Furthermore, the hidden layer is equipped with 10 neurons for
each set of NNA during the training process. The real-time
characteristic curve data featuring roughly 5000 data points are
divided into 70% (3500 data points) for training and 30% (1500
data points) for testing to ensure a robust evaluation of the system
performance. Then, the output layer represents the optimized
power value (Δ𝑃max 𝑝). Notably, the sigmoid activation function
and the Adam optimizer are employed in the NNA training
process. A total of 1000 epochs are utilized for both training
and testing in the NNA process, contributing to the refinement
of the algorithm.

The proposed algorithm assesses the performance of a PV
module by considering several factors to demonstrate its effec-
tiveness:

Fig. 4. Flowchart of ARL-NNA algorithm

3.3.1. Percentage error for maximum peak power (eMPP)

The factor, as detailed in reference [34], assesses the percentage
difference between maximum power values under partial shad-
ing conditions (𝑃𝑚𝑝 (𝑝𝑠𝑝) ) and datasheet values (𝑃𝑚𝑝 (data) ),
relative to the maximum power under normal operating condi-
tions (𝑃𝑚𝑝 (noc) ), expressed in equation (23)

eMPP =
𝑃𝑚𝑝 (data) −𝑃𝑚𝑝 (𝑝𝑠𝑝)

𝑃𝑚𝑝 (noc)
∗100. (23)

3.3.2. Mismatching power loss (Mpl)

The mismatching power loss (𝑀𝑝𝑙), outlined by equation (24)
and elaborated in [33], gauges the discrepancy between the sum
of experimental powers under different partial shading patterns
(𝑃𝑒𝑚𝑝) and the global maximum powers (𝑃𝑔𝑚𝑝) observed dur-
ing PV module operation, offering insights into efficiency losses
during partial shading patterns

𝑀PL =
𝑃emp −𝑃gmp

𝑃emp
(24)

3.3.3. Fill factor (FF)

The fill factor, according to equation (25) as described in [34],
measures the ratio of the global maximum power generated by
a PV module under partial shading patterns to the experimental
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power produced at the open-circuit voltage and short circuit
current

Fill Factor =
𝑃𝑔𝑚𝑝

𝑉𝑜𝑝𝑐 𝐼𝑠ℎ𝐶
. (25)

3.3.4. Root mean square error (RMSE)

The disparity between the partial shading patterns current and
the normal operating condition current (𝐼noc) is signified by the
root mean square error (RMSE) [33]. Equation (26) gives the
mathematical description

RMSE =

√√√√√√√ 𝑛∑︁
𝑖=1

[ (
𝐼max 𝑝 − 𝐼noc

)
∧2

]
𝐼noc

∗100. (26)

4. RESULT AND ANALYSIS

Section 4 outlines a comprehensive procedure for handling ac-
cumulated experimental characteristic curve data from partial
shading patterns, employing the innovative ARL-NNA algo-
rithm. Rigorous experimentation and comparative analyses with
existing algorithms validate the results, ensuring the robustness
and reliability of the proposed algorithm through scrutiny of
various error metrics and processing times. This systematic ap-
proach not only advances the understanding of partial shading
effects but also establishes the efficacy of the ARL-NNA algo-
rithm in real-world applications.

4.1. Experimental data summary

Section 4.1 presents the input values representing partial shad-
ing patterns, which were collected through experimental data
obtained from our Power and Energy Management Laboratory.
Due to partial shading, the output of the PV module debilitates,
and the characteristics curve exhibits values in multiple peaks.
The experimental setup of the PV module with partial shading
patterns is shown in Fig. 5. In the present research work, 13 par-
tial shading patterns are investigated. They are convened in the
following patterns such as normal, centre, centre 20% shaded,
diagonal, left bottom 30% shaded, top left shaded, random, bot-
tom right shaded, right top 40% shaded, fourth row fully shaded,
second column fully shaded, condition during and post rain as
presented in Fig. 6a–m.

Fig. 5. Experimental setup of the PV module

The input parameters for the UEP, as specified in Section 2, are
experimentally collected using the SVL-0050P monocrystalline
PV module type with specifications of 𝐼𝑠ℎ𝑐 = 3.06 A, 𝑉𝑜𝑝𝑐 =

(a) Pattern-I (b) Pattern-II (c) Pattern-III

(d) Pattern-IV (e) Pattern-V (f) Pattern-VI

(g) Pattern-VII (h) Pattern-VIII (i) Pattern-IX

(j) Pattern-X (k) Pattern-XI (l) Pattern-XII

(m) Pattern-XIII

Fig. 6. Assorted types of partial shading patterns

21.8 V, 𝐼max 𝑝 = 2.87 A,𝑉max 𝑝 = 17.1 V, and 𝑃max 𝑝 = 50 W. The
PV module setup employs a voltmeter with a range of 0–200 V
DC, an ammeter with a range of 0–20 A DC, and a rheostat with a
range of 0–200 Ω and a maximum current of 5 A. The IC3202B
features 12-bit resolution and operates within a temperature
range of−40◦C to 85◦C. The digital display values are facilitated
by IC 23741, with a capacitor model denoted as 508C2 (m) and a
relay model specified as JQC-3FF-S-Z, supporting a maximum
load of 250 V/10 A AC and 30 V/10 A DC, with a trigger
current of 5 mA and a working voltage of 5 V. Additionally,
the photo coupler (PC817C) features a collector-emitter output
voltage of 35 V, an emitter-collector output voltage of 6 V, an
input forward current of 50 mA, an input power dissipation of
70 mA, and a storage temperature range of −55◦C to 25◦C.

Table 1 presents an overview of the experimentally collected
data from the laboratory. Pattern I represents the reference case,
which demonstrates the PV module’s behavior under normal
conditions without partial shading. In contrast, Patterns II to
XI represent various basic partial shading patterns. Patterns
XII and XIII, on the other hand, encompass scenarios during
and after rainfall. The collection of partial shading patterns is
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further organized into various combinations. In each of these
permutations, the values of the PV module parameters change
due to the specific partial shading patterns applied.

Table 1
Experimental input values of PV module

Pattern
no.

Partial
shading
patterns

Experimental input parameter values
𝐼𝑠ℎ𝑐
(A)

𝑉𝑜𝑝𝑐
(V)

𝐼max 𝑝

(A)
𝑉max 𝑝

(V)
𝑃max 𝑝

(W)

I Normal condition 1.86 19.9 1.71 14.8 25.3
II Centre 0.35 19.3 0.26 17.4 4.56
III Centre 20% shaded 0.87 20.1 0.74 17.5 13.0
IV Diagonal 0.52 19.4 0.46 17.3 8.03

V Left bottom
30% shaded 1.59 19.7 0.51 18.0 9.22

VI Top left shaded 1.96 19.6 1.73 5.34 9.24
VII Random 0.49 19.3 0.42 17.1 7.30

VIII Bottom right
shaded 1.55 19.6 1.36 6.45 8.78

IX Right top
40% shaded 1.56 19.6 1.41 6.24 8.83

X 4th row fully
shaded 0.44 19.7 0.38 17.9 6.89

XI Second column
fully shaded 1.53 19.5 1.40 6.32 8.85

XII Rainy condition 0.30 19.8 0.27 15.5 4.34
XIII Post-rain condition 0.59 20.5 0.54 16.6 9.12

The extension parameter values are obtained through exper-
imental data and are subsequently employed in the Newton-
Raphson method along with the product of I–V (current-voltage)
and P-V (power-voltage) characteristic curves. The proposed
ARL-NNA algorithm plays a vital role in refining the behavior
of the PV module and extracting the optimal PV power output
under the diverse experimental partial shading patterns. Finally,
the trained model in the proposed algorithm produces an output
that is displayed for further analysis and evaluation.

4.2. Analysis of the tracking process

The Power and Energy Management Lab at Thiagarajar College
of Engineering, Madurai, is the focal point for experimental data
collection on 13 diverse partial shading patterns. Utilizing IV-
Swinger software for analysis and MATLAB 2019a for pattern
execution, the study employs the existing ARL-NNA algorithm
for a meticulous tracking process to determine optimal opera-
tional points based on current vs. voltage and power vs. voltage
characteristics. Results are compared with existing algorithms,
and validation is performed using various error metrics. The
gathered parameters are input into classical and soft computing
algorithms, and both existing and proposed algorithms undergo
a tracking process with a fixed duty cycle value, validated at dif-
ferent angular positions within characteristic curves. The identi-
fication of the global maximum power point tracking (GMPPT)
involves adjusting angular positions from positive (P1), zero

(P2), and negative (P3), with P2 emerging as the GMPPT. Sub-
sequent sections delve into the techniques employed for obtain-
ing outputs under partial shading conditions using the existing,
and ARL-NNA algorithm, providing insights into the testing,
training, and execution of the tracking process across both algo-
rithmic approaches.

4.3. Appraisal of existing algorithms

In the comprehensive evaluation of algorithms targeting the
identification of P2, as depicted in Fig. 3 as the global maximum
power point tracking (GMPPT), a cohesive approach was em-
ployed to evaluate various methodologies. The evaluated algo-
rithms encompassed traditional techniques such as perturb and
observe (P&O) and incremental conductance (InC), alongside
more sophisticated approaches like particle swarm optimization
(PSO), artificial neural network (ANN), deep neural network
(DNN), and Q-learning. The experimentation involved rigorous
iterations and parameter tuning for each algorithm. P&O and
InC were subjected to 1000 iterations with a fixed duty cycle
(Δ𝐷 = 0.01 +weight), while PSO underwent a similar num-
ber of iterations with cognitive and social learning (𝑐𝑙 = 2, and
𝑐𝑠 = 0.1) parameters and a weight range (𝑤 = 1 to 0). Real-
time characteristic curves were meticulously collected, totaling
5000 data points. For ANN and DNN, data allocation of 70%
for training, and 30% testing was performed, with specific ar-
chitecture details including three hidden layers, 100 neurons,
and sigmoid activation functions. The Q-learning algorithm was
characterized by a normalization constant (𝛼 = 0.1), a discount
factor (Ψ = 0.9), and a set number of iterations. The outcomes
of these evaluations, encompassing 13 different patterns, were
summarized in Table 2, illustrating the optimized power values
(Δ𝑃max 𝑝 (𝑊)) while execution with different algorithms. This
systematic analysis provides valuable insights into the perfor-
mance and applicability of diverse algorithms for GMPPT, con-
tributing to the advancement of power point tracking method-
ologies. The error analysis is evaluated based on the difference
between the actual power values (𝑃max 𝑝 (𝑊)) and optimized
power value (Δ𝑃max 𝑝 (𝑊)) to estimate algorithm performance
in accurately optimizing PV module output under different par-
tial shading patterns.

4.4. Estimation of proposed ADL-NNA algorithm

In the investigation of the photovoltaic (PV) module perfor-
mance under diverse partial shading patterns, the proposed adap-
tive reinforcement learning with neural network architectures
(ARL-NNA) is introduced as a key analytical tool. The empirical
assessment, as delineated in Table 3, encompasses the execution
of characteristic curve values using the innovative ARL-NNA.
The resultant I–V and P-V characteristic curves are shown in
Figs. 7a–z. Firstly, this evaluation is conducted under normal
conditions (pattern-I), as illustrated in Figs. 7a and 7b. The sub-
sequent tracking process at various angles, represented by values
P1, P2, and P3, unveils the algorithm ability to pinpoint P2 as
the Global maximum power point tracking (GMPPT). Then, the
exploration of 12 additional partial shading patterns as shown
in Figs. 7c–z is executed. Pattern XII, as depicted in Figs. 7c
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Table 2
Calculated optimized power value (Δ𝑃max 𝑝 (𝑊)) for different partial shading patterns using existing algorithms

Algorithm/
patterns

Without
algorithm

Error
(%) P&O Error

(%) InC Error
(%) PSO Error

(%) ANN Error
(%) DNN Error

(%) q-learning Error
(%)

Pattern-I 25.053 2.247 24.06 1.235 24.089 1.210 24.081 1.218 24.119 1.180 24.007 1.292 24.032 1.267

Pattern-II 4.246 0.313 4.345 0.214 4.359 0.206 4.343 0.216 4.313 0.245 4.313 0.246 4.312 0.247

Pattern-III 12.487 0.513 12.502 0.497 12.490 0.509 12.499 0.509 12.488 0.512 12.488 0.511 12.465 0.504

Pattern-IV 7.820 0.209 7.802 0.227 7.802 0.227 7.802 0.227 7.802 0.227 7.802 0.227 7.802 0.227

Pattern-V 8.279 0.940 8.194 1.025 8.388 0.831 8.485 0.734 8.487 0.732 8.379 0.840 8.384 0.835

Pattern-VI 8.231 1.008 8.171 1.069 8.205 1.034 8.680 0.559 8.356 0.883 8.757 0.482 8.471 0.768

Pattern-VII 6.462 0.838 6.448 0.851 6.233 1.066 6.205 1.094 6.215 1.084 6.232 1.067 6.236 1.063

Pattern-VIII 7.970 0.809 8.134 0.645 8.149 0.630 7.927 0.852 8.326 0.454 8.320 0.459 7.932 0.847

Pattern-IX 8.526 0.303 8.508 0.321 8.527 0.303 8.574 0.255 8.565 0.264 8.560 0.269 8.572 0.258

Pattern-X 6.610 0.280 6.522 0.368 6.648 0.241 6.649 0.246 6.639 0.250 6.622 0.267 6.626 0.263

Pattern-XI 8.687 0.162 8.602 0.247 8.600 0.249 8.609 0.240 8.590 0.260 8.688 0.161 8.600 0.249

Pattern-XII 4.119 0.220 4.104 0.235 3.993 0.347 4.105 0.234 3.954 0.385 3.996 0.343 3.902 0.437

Pattern-XIII 8.866 0.253 8.855 0.264 8.861 0.258 8.817 0.302 8.8025 0.317 8.846 0.273 8.851 0.268

Table 3
Estimation of PV module parameters under assorted partial shading patterns for the proposed ARL-NNA algorithm

S.
No.

Parameters/
patterns

Extracted parameters Characteristic curve values Error (%)
(𝑃max 𝑝−Δ𝑃max 𝑝)A 𝐼𝑜

(A)
𝐼𝑝ℎ
(A)

𝑅𝑠𝑒
(Ω)

𝑅𝑝ℎ

(Ω)
Δ𝐼max 𝑝

(A)
Δ𝑉max 𝑝

(V)
Δ𝑃max 𝑝

(W)
𝐼𝑠ℎ𝑐
(A)

𝑉𝑜𝑝𝑐
(V)

1. Pattern-I 1.00 6.731e−08 1.866 0.037 506.207 1.706 14.785 25.219 1.820 17.383 80.1×10−3

2. Pattern-II 2.30 4.168e−06 0.344 5.236 250.795 0.259 17.379 4.515 0.288 18.945 44.6×10−3

3. Pattern-III 1.37 1.492e−08 0.871 0.101 303.157 0.739 17.419 12.563 0.863 18.608 437.0×10−3

4. Pattern-IV 1.28 1.027e−09 0.503 0.415 701.855 0.458 17.245 7.908 0.518 20.998 121.1×10−3

5. Pattern-V 1.44 2.237e−08 0.623 0.101 356.702 0.484 17.975 8.700 0.653 20.216 519.3×10−3

6. Pattern-VI 1.19 4.134e−09 2.639 7.326 21.365 1.703 5.254 8.956 1.958 18.765 284.0×10−3

7. Pattern-VII 1.04 1.063e−10 0.488 1.218 1753.083 0.393 17.025 6.562 0.487 18.998 738.0×10−3

8. Pattern-VIII 1.13 6.272e−08 1.670 5.378 67.846 1.343 6.355 8.539 1.538 15.768 240.7×10−3

9. Pattern-IX 1.13 6.917e−09 1.745 6.904 58.252 1.407 6.201 8.590 1.559 17.787 239.1×10−3

10. Pattern-X 2.48 1.303e−05 0.421 4.772 177.725 0.379 18.768 6.762 0.439 18.803 127.8×10−3

11. Pattern-XI 1.09 1.052e−09 1.741 9.031 65.989 1.383 6.319 8.739 1.527 20.659 110.1×10−3

12. Pattern-XII 1.04 2.333e−10 0.308 1.544 2086.036 0.268 15.499 4.155 0.299 17.958 184.5×10−3

13. Pattern-XIII 1.00 1.971e−09 0.592 0.674 734.887 0.539 16.576 8.846 0.589 19.558 273.9×10−3

and 7d, is notably identified as particularly disruptive due to
the susceptibility to unpredictable environmental changes, pos-
ing potential risks of overloading and equipment injury. In the
context of mitigating the adverse effects of partial shading on
both the PV module and interconnected electrical systems, the
accurate estimation of PV module parameters, as detailed in
Table 3, is a crucial aspect. These parameters are extracted and
optimized using the proposed ADL-NNA algorithm, ensuring a

comprehensive understanding and effective mitigation of partial
shading effects on solar power systems.

The study underscores the importance of precise parameter
estimation to navigate substantial challenges arising from partial
shading scenarios. By offering comprehensive insights into the
dynamic behavior of the PV module under diverse conditions,
the research paves the way for a deeper understanding of how
environmental changes influence performance and necessitates
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (m) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

(y) (z)

Fig. 7. Characteristics curves (IV & PV) of PV module for different patterns
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proactive measures to ensure the stability and reliability of the
interconnected electrical systems. The integration of ARL-NNA
as a novel algorithm contributes to the study innovation, promis-
ing enhanced accuracy in tracking and mitigating the impact of
partial shading on PV module performance.

4.5. Discussion on outcomes

The experimental and simulated results for the thirteen partial
shading patterns present estimated outcomes, incorporating di-
verse error types such as percentage error for maximum peak
power (e𝑚𝑝𝑝), mismatch power loss (M𝑝𝑙), fill factor (FF), root
mean square error (RMSE), and processing time. Both exist-
ing algorithms and the proposed algorithm undergo calculation
of these error metrics, enabling a comprehensive comparison
across different performance criteria.

4.5.1. Evaluation of different factors

Figures 8–11 showcase 3D bar graphs representing different
miscalculation factors and the results are further validated with
diverse error metric values. The study compared the perfor-
mance of various optimization algorithms, including without
algorithm, P&O, InC, PSO, ANN, DNN, q-learning, and ARL-
NNA, across thirteen partial shading patterns (P-I to P-XIII),
evaluating factors like percentage error of maximum peak power
(e𝑚𝑝𝑝), mismatching power loss (𝑀𝑝𝑙), fill factor, and root mean
square error (RMSE) to assess their effectiveness in enhanc-
ing solar panel efficiency under different shading conditions.
Notably, the ARL-NNA algorithm consistently demonstrates
lower error values across all thirteen partial shading patterns.
This substantiates the exceptional performance of the proposed
ARL-NNA algorithm, emphasizing its superiority compared to
the mentioned existing algorithms in handling and minimizing
errors.

Fig. 8. e𝑚𝑝𝑝 of various algorithms

Fig. 9. 𝑀𝑝𝑙 of various algorithms

Fig. 10. FF of various algorithms

Fig. 11. RMSE of various algorithms

4.5.2. Estimation of processing time

The assessment of proposed algorithms with varying process-
ing times, as depicted in Fig. 12, is incorporated in MATLAB
2019a in an Intel core I3 processor. It is evident that fundamen-
tal, analytical, and classical algorithms exhibit slightly extended
durations when compared to alternative methods. Notably, bio-
inspired and soft computing algorithms demonstrate marginally
shorter processing times. However, the general process executed
for all patterns, in the absence of a specific algorithm, remains
consistent at a duration ranging from 1.23 to 1.58 seconds. Con-
trastingly, existing algorithms such as P&O, InC, PSO, ANN,
DNN, and q-learning operate within a narrower time frame,
spanning from 1.03 to 1.55 seconds.

Remarkably, the ARL-NNA algorithm emerges as a stand-
out performer in terms of rapid execution and precise tracking
of maximum values. It remarkably accomplishes the tracking

Fig. 12. Processing time of various algorithms
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process for all patterns within an exceptionally brief timeframe,
ranging from a mere 0.32 to 0.52 seconds.

Furthermore, this algorithm generates fewer error values com-
pared to existing methodologies, underscoring its efficiency in
handling maximum unknown electrical parameters. The swift
and accurate performance of the ARL-NNA algorithm positions
it as a promising contender for optimizing power point tracking
processes, showcasing its potential to outperform traditional and
contemporary algorithms in this domain.

4.5.3. Comparison of different MPPT algorithms

The comparison of maximum power point tracking (MPPT)
algorithms for solar power as depicted in Fig. 13, offers valuable
insights into their respective performances. Figure 13 utilizes a
scoring system ranging from 0 to 10, to track the least and best-
performing parameters. The evaluation is based on the analysis
of existing literature reviews, the study of various algorithms as
put forth in Table 4, and the numerical computing in MATLAB
simulations.

Among the algorithms assessed, the ARL-NNA algorithm
emerged as the top performer, gathering the highest average

score. This highlights its efficiency in optimizing power gener-
ation in solar systems. Following closely behind are established
methods like P&O, InC, PSO, ANN, DNN, and Q-l algorithms,
showcasing their adaptability and effectiveness in navigating the
dynamic operational environments of PV module power under
partial shading conditions. The study underscores the pivotal
role of artificial intelligence (AI) techniques in striking a bal-
ance between algorithm complexities and achieving desirable
MPPT performance. By leveraging classical, bio-inspired, and
soft computing algorithms the study demonstrates promise in
enhancing the efficiency and reliability of solar energy systems,
paving the way for sustainable energy solutions.

The comparative analysis as shown in Table 4 delves into a va-
riety of methods for identifying the MPPT in PV modules [35]. It
encompasses conventional techniques like P&O and InC, which
are valued for their simplicity and reliability but may struggle
to adapt to changing conditions. In contrast, modern approaches
such as bio-inspired (BI) and artificial intelligence algorithms
like PSO, ANN, DNN, and q-learning offer increased flexibility
and precision, especially in scenarios involving partial shad-
ing and unpredictable environmental conditions. Additionally,

Table 4
Comparing existing and proposed MPPT algorithms

Index P&O InC PSO ANN DNN q-learning ARL-NNA

Tracking speed Below Below Sensible Speedy Below Speedy Speedy

Tracking accuracy Sensible Sensible Improved Speedy Weak Speedy Speedy

Processing speed Elevated Elevated More More More Speedy Speedy

Tracking under PSC Deprived Deprived Sensible Sensible Slow Improved Speedy

Tracking under
normal conditions Sensible Sensible Sensible Sensible Sensible Sensible Improved

Oscillation problem Certainly Certainly No No None No No

Tracking MPP Low Low Elevated Sensible Weak Speedy Speedy

Complexity Certainly Certainly Below Certainly Indeed No No

Input parameters Voltage and
current

Voltage and
current

Voltage and
current

Voltage and
current

Voltage and
current

Voltage and
current

Voltage and
current

Processing tuning Sensible Sensible Sensible More Below More More

Efficiency Below Below Improved More Below More More

Processing period Elevated Elevated Sensible Below Sensible Low Low

Cost Elevated Elevated Elevated Sensible Elevated Sensible Sensible

Algorithm complexity Certainly Certainly Sensible Sensible Indeed Improved Improved

Advantages Simplicity
Overcome

the oscillation
problem

Global search
effective

Below steady-
state oscillation

Straight
process

Efficient for
global tracking

Efficient for
tracking

Disadvantage Oscillation
problem

Increases
of cost

Elevated-
dimensional

space

Cost
elevated

Weak performance
for nonlinear data

More training
data

Cost
elevated

Applications Grid Grid Grid and solar
vehicles

On and off
the grid,

solar vehicles
Microgrid

On and off
the grid,

solar vehicles

On and off
the grid,

solar vehicles
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Fig. 13. Performance estimation of AI-based MPPT algorithms

the proposed adaptive reinforcement learning with neural net-
work architecture (ADL-NNA) algorithm within the realm of
ML further enhances accuracy, albeit with higher computational
difficulty and data needs.

The selection of a method depends on the precise application,
with simpler techniques remaining effective in less complex situ-
ations, while superior machine learning approach, including re-
inforcement learning algorithms, become increasingly essential
for PV systems optimizing in demanding actual world circum-
stances. The comprehensive investigation of all partial shading
patterns follows a consistent procedure to observe the tracking
process at zero angles.

During the testing and training of the ARL-NNA algorithm,
the optimal reward function value for maximum power is es-
tablished through multiple iterations to enhance precision. The
outcomes of the executed algorithms are rigorously validated
using various error metrics. Consequently, it can be concluded
that the ARL-NNA algorithm indeed exhibits minimal errors,
and the processing time required is significantly shorter, mea-
sured in fractions of a second, compared to any other algorithms
mentioned in the study. This study also significantly impacts
various realms of electrical engineering, introducing pioneer-
ing methods in power systems through a novel PV module using
MPPT, potentially transforming solar energy integration into
power grids.

Power electronics benefits from the advancement in maxi-
mum power point tracking techniques enhancing the efficiency
of the power conversion systems. Solid-state electronics and in-
dustrial electronics gain insights into improving the performance
of large-scale photovoltaic installations. The cross-disciplinary
impact extends to modern information and energy technologies,
where the integration of machine learning contributes to smarter
and more adaptive energy systems, aligning with the evolv-
ing landscape of digitization and sustainability. Furthermore,
the proposed approach utilizing the ARL-NNA algorithm con-
sistently demonstrates superior performance compared to the
aforementioned algorithms discussed in the study, even in the
face of significant weather changes, steady-state conditions, os-
cillations due to fluctuated inputs, and the need to meet energy
demands.

5. CONCLUSION

Solar energy is inevitable today and in the future. To minimize
the power loss in the solar energy conversion system, accurate
maximum power point tracking of PV modules is essential for
optimizing their performance under varying partial shading con-
ditions and diverse climatic scenarios. In this study, we exposed
the PV module to 13 different partial shading patterns using
real-time experimental data to investigate the MPPT process.
For accurate and speedy measurement of real-time data of the
PV module, we introduced a novel algorithm known as adap-
tive reinforcement learning with neural network architectures
(ARL-NNA). This algorithm demonstrated the remarkable ca-
pability to modernize the MPPT process, to track the maximum
power point along with characteristic curves within a fraction
of a second. Our study unequivocally concludes that the pro-
posed ARL-NNA machine learning algorithm is highly suitable
for conducting the tracking process with fewer errors compared
to other algorithms. Moreover, our research establishes that the
proposed algorithm represents a viable means of swiftly tracking
maximum power points. This research underscores the poten-
tial of machine learning and adaptive algorithms in advancing
renewable energy technologies and beyond, emphasizing their
role in shaping a more sustainable and efficient future. Looking
ahead, the ARL-NNA algorithm presents a transformative so-
lution that extends beyond photovoltaic systems. It opens up a
multitude of possibilities for innovation and efficiency enhance-
ment across various domains, including environmental forecast-
ing, crop management optimization, energy efficiency enhance-
ment, healthcare intervention support, and building energy use
optimization.
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