Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let T and S be commuting Markovian operators on L1(X). We prove that when the operators are mean ergodic and {F(m,n)} is a directionally (T, S)-superadditive dominated process, then the “averages” n−2 F(n,n) converge in L1-norm. If, further, the process is strongly superadditive, then the same averages converge a.e. as well.
Czasopismo
Rocznik
Tom
Strony
173--187
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Department of Mathematics, North Dakota State University, Fargo, ND 58105, USA
autor
- Department of Mathematics, Ben-Gurion University of the Negev, Beer Sheva, Israel
Bibliografia
- [1] M. A. Akcoglu and U. Krengel, Ergodic theorem for superadditive processes, J. Reine Angew. Math. 323 (1981), pp. 53-67.
- [2] M. A. Akcoglu and L. Sucheston, A ratio ergodic theorem for superadditive processes, Z. Wahrsch. Verw. Gebiete 44 (1978), pp. 269-278.
- [3] A. Brunel, Théorème ergodique ponctuel pour un semi-groupe commutatif finiment engendré de contractions de L1, Ann. Inst. H. Poincaré B9 (1973), pp. 327-343.
- [4] D. Çömez, An ergodic theorem for multidimensional superadditive processes, Canadian J. Math. 37 (1985), pp. 612-634.
- [5] D. Çömez, Convergence of moving averages of multiparameter superadditive processes, New York J. Math. 3A (1998), pp. 135-148.
- [6] D. Çömez and M. Lin, Mean ergodicity of L1-contractions and pointwise ergodic theorems, in: A.E. Convergence in Ergodic Theory and Probability II, A. Bellow and R. Jones (Eds.), Academic Press, Boston 1991, pp. 113-126.
- [7] Y. Derriennic and U. Krengel, Subadditive mean ergodic theorem, Ergodic Theory Dynamical Systems 1 (1981), pp. 33-48.
- [8] N. Dunford and J. Schwartz, Linear Operators, Part I, Wiley, New York 1958.
- [9] R. Emilion and B. Hachem, A multiparameter strongly superadditive ergodic theorem, Math. Z. 189 (1985), pp. 11-17.
- [10] N. A. Fava, Weak type inequalities for product operators, Studia Math. 42 (1972), pp. 271-288.
- [11] S. Ferrando, Moving ergodic theorems for superadditive processes, Canadian J. Math. 47 (1995), pp. 728-743.
- [12] S. Hasegawa and R. Sato, On d-parameter pointwise ergodic theorems in L1, Proc. Amer. Math. Soc. 123 (1995), pp. 3455-3465.
- [13] U. KrengeI, Ergodic Theorems, de Gruyter, Berlin 1985.
- [14] R. T. Smythe, Multiparameter subadditive processes, Ann. Probab. 4 (1976), pp. 772-782.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b17d5b8c-e8f3-4586-970f-c22a1942d0b3