PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ produktów utlenienia lipidów na właściwości oraz proces elektroporacji dwuwarstwowych płaskich błon lipidowych

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Influence of the lipid peroxidation products on properties and electroporation process of the planar bilayer lipid membranes
Języki publikacji
PL
Abstrakty
PL
Alternatywnym sposobem zwiększenia biernej przepuszczalności błon biologicznych dla cząsteczek biologicznie aktywnych, w tym leków, jest elektroporacja. Pod wpływem pola elektrycznego o odpowiednich parametrach w fazie lipidowej błon biologicznych pojawiają się pory. Podatność błony na elektroporację zależy od wielu czynników, w tym otoczenia komórki oraz od stanu lipidów tworzących błony. Wyniki badań doświadczalnych oraz teoretycznych dotyczące wpływu wybranych produktów utlenienia lipidów na podatność błony na elektroporację nie prowadzą do jednoznacznych konkluzji. Celem niniejszej pracy jest zbadanie wpływu wszystkich produktów utlenienia lecytyny jajecznej obecnych w utlenionej lecytynie na przebieg elektroporacji. Produkty utlenienia lecytyny zbadano techniką spektroskopii podczerwieni. Pomiary wartości parametrów elektrycznych i elektroporacyjnych utworzonych błon przeprowadzono za pomocą potencjostatu-galwanostatu w układzie 4-elektrodowym. Porównanie wyników badań z użyciem błon utworzonych z lecytyny utlenionej oraz nieutlenionej wykazało spadek wartości pojemności właściwej, wzrost rezystancji oraz stabilności błony zawierającej produkty utlenionej lecytyny. Uzyskane wyniki badań mogą być przydatne w optymalizacji protokołów elektroporacyjnych u pacjentów szczególnie narażonych na czynniki utleniające np. większą ekspozycję na UV.
EN
An alternative way of increasing the passive permeability of biological membranes to biologically active molecules, including drugs, is electroporation. Electric field of the relevant parameters applied to biological membranes creates pores in lipid part of membranes. Membrane susceptibility to electroporation depends on many factors: external environment of the cell, as well as a condition of membrane lipids. The results of experimental and theoretical research on influence of selected products of lipid oxidation on membrane susceptibility to electroporation do not lead to clear conclusions. The aim of this study is to examine the impact of all the products of oxidation of egg lecithin on the electroporation process. The oxidation of lecithin was examined by infrared spectroscopy. Measurements of the electrical membrane characteristics and parameters of electroporation were performed using a potentiostat-galvanostat in a four-electrode system. Comparison of the results obtained in experiments performed on oxidized and unoxidized lecithin have revealed a decline in the value of the specific capacity, an increase in the resistance, and stability of the membrane containing the oxidized lipids. These results may be useful in optimizing protocols of electroporation for patients, particularly those exposed to oxidizing agents, e.g. exposure to UV.
Wydawca
Rocznik
Strony
229--245
Opis fizyczny
Bibliogr. 111 poz.
Twórcy
autor
  • Politechnika Wrocławska, Wydział Podstawowych Problemów Techniki, Katedra Inżynierii Biomedycznej, 50-370 Wrocław, Wybrzeże Wyspiańskiego 27
autor
  • Politechnika Wrocławska, Wydział Podstawowych Problemów Techniki, Katedra Inżynierii Biomedycznej, 50-370 Wrocław, Wybrzeże Wyspiańskiego 27
Bibliografia
  • [1] G.L. Prasanna, T. Panda: Electroporation: basic principles, practical considerations and applications in molecular biology, Bioprocess Engineering, vol. 16, 1997, s. 261-264.
  • [2] J.C. Weaver: Electroporation of Biological Membranes from Multicellular to Nano Scales, Institute of Electrical and Electronics Engineers, 2003, s. 754-768.
  • [3] T.F. Yuan: Electroporation: an arsenal of application, Cytotechnology, vol.54, 2007, s. 71-76.
  • [4] M.M. Gongora-Nieto, D.R. Sepulveda, P. Pedrow, G.V. Barbosa-Canovas, B.G. Swanson: Food Processing by Pulsed Electric Fields: Treatment Delivery, Inactivation Level, and Regulatory Aspects, Lebensmittel-Wissenschaft und-Technologie - Ingenta Connect, vol. 35, 2002, s. 375-388.
  • [5] Q. Zhang, G.V. Barbarosa-Canovas, B.G. Swanson: Engineering Aspects of Plused Electric Field Pasterization, Journal of Food Engineering, vol. 25, 1995, s. 261-281.
  • [6] H.W. Yeom, C.B. Streaker, Q.H. Zhang, D.B. Min: Effects of Pulsed Electric Fields on the Activities of Microorga-nisms and Pectin Methyl Esterase in Orange Juice, Food Microbiology and Safety, vol. 65(8), 2000, s. 1359-1363.
  • [7] J.F. Edd, L. Horwitz, R.V. Davalos, L.M. Mir, B. Rubinsky: In vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporation, IEEE Transactions on Biomedical Engineering, vol. 53(5), 2006, s. 1409-1415.
  • [8] B. Rubinsky: Irreversible electroporation in Medicine, Technology in Cancer Research and Treatment, vol. 6(4), 2007, s. 255-259.
  • [9] D.S. Dimitrov: Handbook of Biological Physics, Chapter 18: Electroporation and Electrofusion of Membranes, Elsevier Science B.V., vol. 1, 1995, s. 851-900.
  • [10] T.Y. Tsong: Electroporation of cell membranes, Biophysical Journal, vol. 60, 1991, s. 297-306.
  • [11] S. Šalomskaitė-davalgienė, K. Čepurnienė, S. Šatkauskas, M.S.Venslauskas, L.M. Mir: Extent of Cell Electrofusion In Vitro and In Vivo Is Cell Line Dependent, Anticancer Research, vol. 29, 2009, s. 3125-3130.
  • [12] J. Teissie, C. Ramos: Correlation between Electric Field Pulse Induced Long-Lived Permeabilization and Fusogenicity in Cell Membranes, Biophysical Journal, vol.74, 1998, s. 1889-1898.
  • [13] A. Ogura, J. Matsuda, R. Yanagimachi: Birth of normal young after electrofusion of mouse oocytes with round spermatids, Proceedings of the National Academy of Science, vol. 91, 1994, s. 7460-7462.
  • [14] K.D. Mertz, G. Weisheit, K. Schilling, G.H. Lüers: Electrotransfer of primary neural cultures: a simple method for direct gene transfer in vitro, Histochemistry and Cell Biology, vol. 118, 2002, s. 501-506.
  • [15] J. Gehl: Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research, Acta Physiologica Scandinavica, vol. 177, 2003, s. 437-447.
  • [16] J. Saczko, M. Nowak, N. Skolucka, J. Kulbacka, M. Kotulska: The effects of the electro-photodynamic in vitro treatment on human lung adenocarcinoma cells, Bioelectrochemistry, vol. 79, 2010, s. 90-94.
  • [17] A. Sieroń, S. Kwiatek: Twenty years of experience with PDD and PDT in Poland - Review, Photodiagnosis and Photodynamic Therapy, vol. 6, 2009, s. 73-78.
  • [18] J.C. Weaver, T.E. Vaughan, Y. Chizmadzhev: Theory of electrical creation of aqueous pathways across skin transport barriers, Advanced Drug Delivery Reviews, vol. 35, 1999, s. 21-39.
  • [19] S.B. Dev, D.P. Rabussay, G. Widera, G.A. Hofmann: Medical Applications of Electroporation, IEEE Transactions On Plasma Science, vol. 28(1), 2000, s. 206-223.
  • [20] M. Kambe, D. Arita, H. Kikuchi, T. Funato, F. Tezuka, M. Gamo, Y. Murakawa, R. Kanamuru: Enhancement of the Efficacy of Anticancer Drugs with Electroporation: Successful Electrochemiotherapy against Gastric Cancer Cells Lins in Vivo I in Vitro, Biomedicine & Pharmacotherapy, vol. 60, 2006, s. 458-462.
  • [21] A.R. Denet, R. Vanbever, V. Preat: Skin electroporation for transdermal and topical delivery, Advanced Drug Delivery Reviews, vol. 56, 2004, s. 659-674.
  • [22] A.K. Banga, S. Bose, T.K. Ghosh: Iontophoresis and electroporation: comparisons and contrasts, 1999, International Journal of Pharmaceutics, vol. 179, 1999, s. 1-19.
  • [23] Z. Jia, Z. Guoqiang, L. Ying, T. Fengping, D. Fuxin: TRANSDERMAL Delivery of Piroxicam by Surfactant Mediated Electroporation, Tsinghua Science and Technology, vol. 10(5), 2005, s. 542-547.
  • [24] K. Mori, T. Hasegawa, S. Sato, K. Sugibayashi: Effect of electric field on the enhanced skin permeation of drugs by electroporation, Journal of Controlled Release, vol. 90, 2003, s. 171-179.
  • [25] Q. Hu, W. Liang, J. Bao, Q. Ping: Enhanced transdermal delivery of tetracaine by electroporation, International Journal of Pharmaceutics, vol. 202, 2002, s. 121-124.
  • [26] D.C. Bloom, P.M. Goldfarb: The role of intratumour therapy with electroporation and bleomycin in the management of dvanced squamous cell carcinoma of the head and neck, European Journal of Surgical Oncology, vol. 31, 2005, s. 1029-1035.
  • [27] M. Marty, G. Sersa, J.R. Garbay, J. Gehl, CH.G. Collins, M. Snoj, V. Billard, P.F. Geertsen, J.O. Larkin, D. Miklavcic, I. Pavlovic, S.M. Paulin-kosir, M. Cemazar, N. Morsli, D.M. Soden, Z. Rudolf, C. Robert, G.C. O’Sullivan, L.M. Mir: Electrochemotherapy - An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study, The European Journal of Cancer Supplements, vol. 4, 2006, s. 3-13.
  • [28] L.M. Mir, S. Orlowski: Mechanisms of electrochemotherapy, Advanced Drug Delivery Reviews, vol. 35, 1999, s. 107-118.
  • [29] V. Todorovic, G. Sersa, K. Flisar, M. Cemazar: Enhanced cytotoxicity of bleomycin and cisplatin after electroporation in murine colorectal carcinoma cells, Radiology and Oncology, vol. 43(4), 2009, s. 264-273.
  • [30] P. Quaglino, C. Mortera, S. Osella-abate, M. Barberis, M. Illengo, M. Rissone, P. Savoia, M.G. Bernengo: Electro-chemotherapy with Intravenous Bleomycin in the Local Treatment of Skin Melanoma Metastases, Annals of Surgical Oncology, vol. 15(8), 2008, s. 2215-2222.
  • [31] T.W. Wong, Ch.H. Chen, Ch.Ch. Huang, Ch.D. Lin, S.W. Hui: Painless electroporation with a new needle-free microelectrode array to enhance transdermal drug delivery, Journal of Controlled Release, vol. 110, 2006, s. 557-565.
  • [32] X. Zhao, M. Zhang, R. Yang: Control of pore radius regulation for electroporation-based drug delivery, Communica-tions in Nonlinear Science and Numerical Simulation, vol. 15, 2010, s. 400-1407.
  • [33] R. Vanbever, V. Preat: In vivo efficacy and safety of skin electroporation, Advanced Drug Delivery Reviews, vol. 35, 1999, s. 77-88.
  • [34 ] M. Kandušer, M. Fošnarič, M. Šentjurc, V. Kralj-Iglič, H. Hägerstrand, A. Iglič, D. Miklavčič: Effect of surfactant polyoxyethylene glycol (C12E8) on electroporation of cell line DC3F, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 214, 2003, s. 205-217.
  • [35] L. Tung, G.S. Troiano, V. Sharma, R.M. Raphael, K.J. Stebe: Changes in Electroporation Thresholds of Lipid membra-nes Surfactants and Peptides, Annals of the New York Academy of Scinces, vol. 888, 1999, s. 249-265.
  • [36 ] V. Sharma, K. Stebe, J.C. Murphy, L. Tung: Poloxamer 188 Decreases Susceptibility of Artificial Lipid Membranes to Electroporation, Biophysical Journal, vol. 71, 1996, s. 3229-3241.
  • [37] S. Koronkiewicz, K. Bryl: Cholesterol-induced variations in fluctuations of the pores in bilayer lipid membrane, Cellular & Molecular Biology Letters, vol. 4, 1999, s. 567-582.
  • [38] S. Raffy, J. Teissié: Control of Lipid Membrane Stability by Cholesterol Content, Biophysical Journal, vol. 76,1999, s. 2072-2080.
  • [39] Ch. Karolis, H.G.L. Coster, T.C. Chilcott, K.D. Barrow: Differential effects of cholesterol and oxidised-cholesterol in egg lecithin bilayers, Biochimica et BiophysicaActa, vol. 1368, 1998, s. 247-255.
  • [40] Z.A. Levine, Y.H. Wu, M.J. Ziegler, D.P. Tielman, P.T. Vernier: Electroporation Sensitivity of Oxidized Phospholipid Bilayers, Biophysical Journal, vol. 93(3), 2009, s. 41a-41a.
  • [41] P.T. Vernier, Z.A. Levine, Y.H. Wu, V. Joubert, M.J. Ziegler, L.M. Mir, D.P. Tielman: Electroporating Fields Target Oxidatively Demaged Areas in the Cell Membrane, PLoS ONE, vol. 4(11), 2009, s: e7966.
  • [42] P.T. Vernier: Inhomogeneities in Phospholipid Bilayers and Susceptibility to Electropermeabilization, 6th International Workshops on Biological Effects of Electromagnetic Fields; 2010.
  • [43] M. Maccarrone, N. Rosato, A.F. Agrò: Electroporation enhances cell membrane peroxidation and luminescence, Biochemical and Biophysical Research Communications, vol. 206(1), 1995, s.238-245.
  • [44] H.L. Smith, M.C. Howland, A.W. Szmodis, Q. Li, L.L. Daemen, A.N. Parikh, J. Majewski: Early Stages of Oxidative Stress-Induced Membrane Permeabilization: A Neutron Reflectometry Study, Journal of the American Chemical Society, vol. 131(10), 2009, s. 3631-3638.
  • [45] R. Benz, F. Beckers, U. Zimmermann: Reversible Electrical Breakdown of Lipid Bilayer Membranes: A Charge-Pulse Relaxation Study, Journal of Membrane Biology, vol. 48, 1979, s. 181-204.
  • [46] E. Niki, Y. Yoshida, Y. Saito, N. Noguchi: Lipid peroxidation: mechanism, inhibition, and biological effects, Bio-chemical and Biophysical Research Communications, vol. 338, 2005, s. 668-676.
  • [47] J.J. Garcia, R.J. Reiter, M. Karbownik, J.R. Cavalo, G.G. Ortiz, D.X. Tan, E. Martinez-Ballarin, D. Acuna-Castroviejo: N-acetylserotonin suppresses hepatic microsomal membrane rigidity associated with lipid peroxidation, European Journal of Pharmacology, vol. 428, 2001, s. 169-348.
  • [48] A.A. Farooqui, L.A. Horrocks: Lipid peroxides in the free radical pathophysiology of brain disease, Cellular and Molecular Neurobiology, vol. 18, 1998, s. 599-608.
  • [49] R.C. Bruch, W.S. Thayer: Differential effect of lipid peroxidation on membrane fluidity as determined by electron spin resonance probes, Biochimica et Biophysica Acta, vol. 733, 1983, s. 216-222.
  • [50] G.E. Dobretsov, T.A. Borschevskaya, V.A. Petrov, Y.U. Vladimirov: The increase of phospholipid bilayer rigidity after lipid peroxidation, FEBS Letters, vol. 84, 1977, s. 125-128.
  • [51] C. Richter: Biophysical consequences of lipid peroxidation in membranes, Chemistry and Physics of Lipids Journal, vol. 44, 1987, s. 175-189.
  • [52] M.L. Wratten, G. Vanginkel, A.A. Vantveld, A. Bekker, E.E. Vanfaassen, A. Sevanian: Structural and dynamic effects of oxidatively modified phospholipids in unsaturated lipid membranes, Biochemistry, vol. 31, 1992, s. 10901-10907.
  • [53] W. Leyko, D. Ertel, G. Bartosz: Effect of hyperthermia and lipid peroxidation on the erythrocyte membrane structure, International Journal of Radiational Biology, vol. 59, 1991, s. 1185-1193.
  • [54] R.P. Mason, M.F. Walter, P.E. Mason: Effect of oxidative stress on membrane structure: small-angle X-ray diffraction analysis, Free Radical Biology & Medicine, vol. 23(3), 1997, s. 419-425.
  • [55] J. Wong-Ekkabut, Z. Xu, W. Triampo, I.M. Tang, D.P. Tielman: Effect of Lipid peroxidation on the Properties of Lipid Bilayers: A Molecular Dynamics Study, Biophysical Journal, vol. 93, 2007, s. 4225-4236.
  • [56] L. Beranova, L. Cwiklik, P. Jurkiewicz, M. Hof, P. Jungwirth: Oxidation Changes Physical Properties of Phospholipid Bilayers: Fluorescence Spectroscopy and Molecular Simulations, Langmuir, vol. 26(9), 2010, s. 6140-6144.
  • [57] F.M. Megli, L. Russo: Different oxidized phospholipid molecules unequally affect bilayer packing, Biochimica et Biophysica Acta, vol. 1778, 2008, s. 143-152.
  • [58] G.O. Fruhwirth, A. Loidl, A. Hermetter: Oxidized phospholipids: From molecular properties to disease, Biochimica & Biophysica Acta, vol. 1772, 2007, s. 718-736.
  • [59] J. Kulbacka, J. Saczko, A. Chwiłkowska: Stres oksydacyjny w procesach uszkodzenia komórek, Polski Merkuriusz Lekarski, vol. XXVII157, 2009, s. 44-47.
  • [60] P.M. Abuja, R. Albertini: Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins, Clinica Chimica Acta, vol. 306, 2001, s. 1-17.
  • [61] G. Bartosz: Druga Twarz Tlenu, Wydawnictwo Naukowe PWN, Warszawa 2006.
  • [62] N. Leitinger: Oxidized phospholipids as modulators of inflammation in atherosclerosis, Current Opinion in Lipidology, vol. 14, 2003, s. 421-430.
  • [63] K.J. Sanderson, A.M. Van Rij, Ch.R. Wade, W.H.F. Sutherland: Lipid peroxidation of circulating low density lipo-proteins with age, smoking and in peripheral vascular disease, Atherosclerosis, vol. 118, 1995, s. 45-51.
  • [64] M. Gago-Dominguez, J.E. Castelao, M.C. Pike, A. Sevanian, R.W. Haile: Role of Lipid Peroxidation in the Epidemio-logy and Prevention of Breast Cancer, Cancer Epidemiology Biomarkers and Prevention, vol. 14, 2005, s. 2829-2839.
  • [65] R.P. Singh, S. Sharad, S. Kapur: Free Radicals and Oxidative Stress in Neurodegenerative Diseases: Relevance of Dietary Antioxidants, Journal of Indian Academy of Clinical Medicine, vol. 5(3), 2004, s. 218-25.
  • [66] W.R. Markesbery: Oxidative stress hypothesis in Alzheimer’s Disease, Free Radical Biology & Medicine, vol. 23(1), 1997, s. 134-147.
  • [67] K.N. Prasad, W.C. Cole, B. Kumar: Multiple Antioxidants in the Prevention and Treatment of Parkinson’s Disease, Journal of the American College of Nutrition, vol. 18(5), 1999, s. 413-423.
  • [68] P. Mueller, D.O. Rudin, H.T. Tien, W.C. Wescott: Methods for the formation of single bimolecular lipid membranes in aqueous solutions, Journal of Physical Chemistry, vol. 67, 1963, s. 534-535.
  • [69] S. Kalinowski, Z. Figaszewski: A four-electrode potentiostat-galvanostat for studies of bilayer lipid membranes, Measurement Science and Technology, vol. 6, 1995, s. 1050-1055.
  • [70] S. Kalinowski: Elektrochemia membran lipidowych Od błon komórkowych do sensorów, Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego, Olsztyn 2004.
  • [71] R.G. Ashcroft, K.R. Thulborn, J.R. Smith, H.G. Coster, W.H. Sawyer: Perturbations to lipid bilayers by spectroscopic probes as determined by dielectric measurements, Biochimica et BiophysicaActa, vol. 602(2), 1980, s. 299-308.
  • [72] S. Kalinowski, G. Ibron, K. Bryl, Z. Figaszewski: Chronopotentiometric studies of electroporation of bilayer lipid membranes, Biochimica et Biophysica Acta, vol. 1369, 1998, s. 204-212.
  • [73] P. Kramar, D. Miklavcic, M. Kotulska, A.M. Lebar: Voltage- and Current-Clamp Methods for Determination of Planar Lipid Bilayer Properties, Advances in Planar Lipid Bilayers and Liposomes, vol. 11, 2010, s. 29-69.
  • [74] M. Naumowicz, A.Z. Figaszewski: Chronopotentiometric technique as a Method for Electrical Characterization of Bilayer Lipid Membranes, Journal of membrane Biology, vol. 240, 2011, s. 47-53.
  • [75] S. Koronkiewicz, S. Kalinowski, K. Bryl: Changes of structural and dynamic properties of model lipid membranes induced by α-tocoferol: implication to the membrane stabilization under external electric field, Biochimica et BiophysicaActa, vol. 1510, 2001, s. 300-306.
  • [76] S. Koronkiewicz, S. Kalinowski, K. Bryl: Programmable chronopotentiometry as a tool for the study of electroporation and resealing of pores in bilayer lipid membranes, Biochimica et Biophysica Acta, vol. 1561, 2002, s. 222-229.
  • [77] S. Kalinowski, Z. Figaszewski: A four-electrode system for measurement of bilayer lipid membrane capacitance, Measurement Science and technology, vol. 6, 1995, s. 1043-1049.
  • [78] A.A. Christy, P.K. Egeberg, Quantitative determination of saturated and unsaturated fatty acids in edible oils by infrared spectroscopy and chemometrics, Chemometrics and Intelligent Laboratory Systems, vol. 82, 2006, s. 130-136.
  • [79] G. Déléris, C. Petibois: Application of FT-IR spectrometry to plasma contents analysis and monitoring, Vibrational Spectroscopy, vol. 32, 2003, s. 129-136.
  • [80] J. Dubois, F.R. van de Voort, J. Sedman, A.A. Ismail, H.R. Ramaswamy: Quantitative Fourier Transform Infrared Analysis for Aniside Value and Aldehydes in Thermally Stressed Oils, JOCS, vol. 73(6), 1996, s. 787-794.
  • [81] M.D. Guillén, N. Cabo: Characterization of Edible oils and Lard by Fourier Transform Infrared Spectroscopy. Relationships between Composition and Frequency of Concrete bands in the Fingerprint Region, Journal of Agri-cultural and Food Chemistry, vol. 74(10), 1997, s. 1281-1286.
  • [82] M.D. Guillén, N. Cabo: Infrared Spectroscopy in the Study of Edible oils and Fats, Journal of Agricultural and Food Chemistry, vol. 75, 1997, s.1-11.
  • [83] M.D. Guillén, N. Cabo: Relationships between the Composition of Edible Oils and Lard and ration of the Absorbance of Specific Bands of their Fourier Transform Infrared Spectra. Role of Some Bands of the Fingerprint Region, Journal of Agricultural and Food Chemistry, vol. 46, 1998, s. 1799-1793.
  • [84] M.D. Guillén, N. Cabo: Usefulness of the Frequency Data of the Fourier Transform Infrared Spectra to Evaluate the degree of Oxidation of Edible Oils, Journal of Agricultural and Food Chemistry, vol. 47, 1999, s. 709-719.
  • [85] M.D. Guillén, N. Cabo: Some of the most significant changes in the Fourier transform infrared spectra of edible oils under oxidative conditions, Journal of Agricultural and Food Chemistry, vol. 80, 2000, s. 2028-2036.
  • [86] M.D. Guillén, N. Cabo: Fourier Transform Infrared Spectra Data Versus peroxide and Aniside Values to determine Oxidative Stability of Edible oils, Food Chemistry, vol. 77, 2002, s. 503-510.
  • [87] M.D. Guillén, N. Cabo, M.L. Ibargoitia, A. Ruiz: Study of both Sunflower Oil and Its Headspace throughout the Oxidation Process. Occurrence in the headspace of Toxic Oxygenated Aldehydes, Journal of Agricultural and Food Chemistry, vol. 53(4), 2005, s. 1093-1101.
  • [88] M.D. Guillén, A. Ruiz: High resolution 1H nuclear magnetic resonance in the study of edible oils and fats, Trends in Food Science & Technology, vol. 12, 2001, s. 328-338.
  • [89] M.D. Guillén, E. Giocoechea, Formation of oxygenated α,β-unsaturated aldehydes and other toxic compounds in sunflower oil oxidation at room temperature in closed receptacles, Food Chemistry, vol. 111, 2008, s.157-16.
  • [90] M.D. Guillén, E. Giocoechea: Oxidation of corn oil at room temperature: Primary and secondary oxidation products and determination of their concentration in the oil liquid matrix from 1H nuclear magnetic resonance data, Food Chemistry, vol. 116, 2009, s. 183-192.
  • [91] M. Hernández-Martinez, T. Gallardo-Velázquez, G. Osorio-Revilla: Rapid characterization and identification of fatty acids in margarines using horizontal attenuate total reflectance Fourier transform infrared spectroscopy (HATR-FTIR), European Food Research and Technology, vol. 231, 2010, s. 321-329.
  • [92] J.V. Kadamne, V.P. Jain, M. Saleh, A. Proctor: Measurements of Conjugated Linoleic Acid (CLA) in CLA-Rich Soy oil by Attenuated Total reflectance-Fourier transform Infrared Spectroscopy (ATR-FTIR), Journal of Agriculture and Food Chemistry, vol. 57, 2009, s. 10483-10488.
  • [93] J. Kiwi, V. Nadtochenko: New Evidence for TiO2Photocatalysis during Bilayer lipid Peroxidation, Journal of Physical Chemistry B, vol. 108, 2004, s. 17675-17684.
  • [94] M.C.M. Moreno, D.M. Olivares, F.J.A. López, J.V.G. Adelantado, F.B. Reig: Determination of unsaturation grade and trans isomers generated during thermal oxidation of edible oils and fats by FTIR, Journal of Molecular Structure, vol. 482, 1999, s. 551-556.
  • [95] M.C.M. Moreno, D.M. Olivares, F.J.A. López, J.V.G. Adelantado, F.B. Reig: Analytical evaluation of polyunsaturated fatty acids degradation during thermal oxidation of edible oils by Fourier transform infrared spectroscopy, Talanta, vol. 50, 1999, s. 269-275.
  • [96] B. Muik, B. Lendl, A. Molina-Diaz, M. Valcarcel, M.J. Ayora-Cañada: Two-dimentional correlation spectroscopy and multivariate curve resolution for the study of lipid oxidation in edible oils monitored by FTIR and FT-Raman spectroscopy, Analytica Chimica Acta, vol. 593, 2007, s. 54-67.
  • [97] C. Petibois, G. Déléris: Oxidative stress effects on erythrocytes determined by FT-IR spectrometry, Analyst, vol. 129, 2004, s. 912-916.
  • [98] C. Petibois, G. Déléris: FT-IR Spectrometry Analysis of Plasma Fatty Acyl Moieties Selective mobilization during Endurance exercise, Biopolymers, vol. 77, 2005, s. 345-353.
  • [99] C. Petibois, G. Déléris: Erythrocyte Adaptation to Oxidative Stress in Endurance Training, Archives of Medical Research, vol. 36, 2005, s. 524-531.
  • [100] F.R. van de Voort, A.A. Ismail, J. Sedman, G. Emo: Monitoring the Oxidation of Edible Oils by Fourier Transform Infrared Spectroscopy, Journal of the American Oil Chemists’ Society, vol. 71(3), 1994, s. 243-253.
  • [101] N. Vlachos, Y. Skopelitis, M. Psaroudaki, V. Konstantinidou, A. Chatzilazarou, E. Tegou: Applications of Fourier transform-infrared spectroscopy to edible oils, Analytica Chimica Acta, vol. 573-574, 2006, s. 459-465.
  • [102] H. Yang, J. Irudayaraj: Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-raman spectroscopy, Food Chemistry, vol. 93, 2005, s. 25-32.
  • [103] S. Boyatzis, E. Ioakimoglou, P. Argitis: UV Exposure and Temperature Effects on Curing mechanisms in Thin Linseed Oil Films: Spectroscopic and Chromatographic Studies, Journal of Applied Polimer Science, vol. 84, 2002, s. 936-949.
  • [104] M. Carini, R. Maffeifacino, G. Aldini, M.T. Calloni: The protection of polyunsaturated fatty acids in micellar systems against UVB-iducedphotooxidation by procyanidis from Vitisvinifera L., and the protective synergy with vitamin E, International Journal of Cosmetic Science, vol. 20, 1998, s. 203-215.
  • [105] G. Dobson: Spectroscopy and spectrometry of lipids - Part 1, European Journal of Lipid Science and Technology, vol. 103, 2001, s. 815-840.
  • [106] H. Yang, J. Irudayaraj: Cpomparison of Near-Infrared, Fourier Transform-Infrared, and Fourier transform-Raman methods for determinating olive pomace Oil Aduleration in Extra Virgin Olive Oil, JAOCS, vol. 78(9), 2001, s. 889-895.
  • [107] S.F. Hamed, M.A. Allan: Application of FTIR Spectroscopy in the Determination of Antioxidant Efficiency in Sunflower Oil, Journal of Applied Sciences Research, vol. 2(1), 2006, s. 27-33.
  • [108] C. Petibois, G. Déléris: Evidence that erythrocytes are highly susceptible to exercise oxidative stress: FT-IR spectro-metric studies at the molecular level, Cell Biology International, vol. 29, 2005, s. 709-716.
  • [109] P. Bonnafous, M.C. Vernhes, J. Teissie, B. Gabriel: The generation of reactive-oxygen species associated with long-lasting pulse-induced electropermeabilization of mammalian cells is based on a non-destructive alteration of the plasma membrane, Biochimica et Biophysica Acta-Biomembranes, vol. 1461,1999, s. 123-134.
  • [110] B. Gabriel, J. Teissie: Generation of reactive-oxygen species induced by electropermeabilization of Chinese hamster ovary cells and their consequence on cell viability, European Journal of Biochemistry, vol. 223, 1994, s. 25-33.
  • [111] Y. Zhou, Ch.K. Berry, P.A. Storer, R.M. Raphael: Peroxidation of Polyunsaturated phospholipid-choline lipids during electroformation, Biomaterials, vol. 28, 2007, s. 1298-1306.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b17b826e-c8b2-4630-b515-731e1ad4d783
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.