PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement of convective heat transfer in a parabolic trough collector using vibrations - an introductory numerical analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy generation systems based on renewable energy sources (RES) are rapidly gaining ground in the global power and heatmarket. Most of these systems are well-suited to distributed energy solutions, including distributed heat production. Individual users and local low-power plants can use solar thermal devices for the purpose of providing domestic hot water, heating and cooling. Nevertheless, the variability of solar irradiance can make it difficult to harvest energy efficiently all year round. Therefore, from the point of view of improving the overall, year-averaged operational parameters of a solar thermal device it isparamount to maximize the heat acquired from it at times ofhigh radiation flux. This paper discusses computational research on enhancing convective heat transfer in the absorber of a parabolic trough collector (PTC), through inducing vibrations of an immersed flat plate. The investigation identifies the influence of different amplitudes and frequencies of oscillatory motion on the absorber’s parameters, compares them with the construction of a classical absorber and considers flow turbulization. The results indicate there is only a limited application of vibrations to enhance operational parameters of solar thermal absorbers, with the best results obtained for thermal fluidflows of below 0.1 dms.
Rocznik
Strony
291--300
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Silesian University of Technology
  • Silesian University of Technology
  • Silesian University of Technology
  • Silesian University of Technology
Bibliografia
  • [1] E. Klugmann and E. Klugmann-Radziemska. Ogniwa i moduły fotowoltaiczne oraz inne niekonwencjonalne źródła energii. Wydawnictwo Ekonomia i Środowisko, 2005.
  • [2] G. Lobaccaro. A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies. Renewable and Sustainable Energy Reviews, 108: 209-237, 2019.
  • [3] A. de la Calle, A. Bayon, and J. Pye. Techno-economic assessment of a high-efficiency, low-cost solar-thermal power system with sodium receiver, phase-change material storage, and supercritical CO2 recompression Brayton cycle. Solar Energy, 199: 885-900, 2020.
  • [4] Q. Ye, M. Chen, and W. Cai. Numerically investigating a wide-angle polarization-independent ultra-broadband solar selective absorber for high-efficiency solar thermal energy conversion, Solar Energy, 184: 489-496, 2019.
  • [5] M. S. Ryu, H. J. Cha, and J. Jang. Effects of thermal annealing of polymer: fullerene photovoltaicsolar cells for high efficiency. Current Applied Physics, 10: s 206- s209, 2010.
  • [6] W. Gogół, O. Skonieczny, and L. Zakrzewski. Niektóre zagadnienia wymiany ciepła w kolektorach energii promieniowania słonecznego. Politechnika Warszawska, 1979.
  • [7] M. Burhan, M. Wakil Shahzad, S. Jin Oh, and K. Choon Ng. Long Term Electrical Rating of Concentrated Photovoltaic (CPV) Systems in Singapore, Energy Procedia, 158: 73-78, 2019.
  • [8] M. George, A. K. Pandey, N. Abd Rahim, V. V. Tyagi, S. Shahabuddin, and R. Saidur. Concentrated photovoltaic thermal systems: Acomponent-by-component view on the developments in the design, heat transfer medium and applications. Energy Conversion and Management, 186: 15-41, 2019.
  • [9] N. Bushra and T. Hartmann. A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends. Renewable and Sustainable Energy Reviews, 114: 109307, 2019.
  • [10] M. Sanchez, I. G. Martinez, E. A. Rincon, and M. D. Duran. Design and thermal-optic analysis of an ultra-solar concentrator, Energy Procedia, 57: 311-320, 2014.
  • [11] M. El Ydrissi, H. Ghennioui H., E. G. Bennouna, and A. Farid. Geometric, optical and thermal analysis for solar parabolic trough concentrator efficiency improvement using the Photogrammetry technique under semi-arid climate. Energy Procedia, 157: 1050-1060, 2019.
  • [12] L. Evangelisti, R. De Lieto Vollaro, and F. As-drubali. Latest advances on solar thermal collectors: A comprehensive review. Renewable and Sustainable Energy Reviews, 114: 109318, 2019.
  • [13] N. B. Desai, S. B. Kedare, and S. Bandyopadhyay. Optimization of design radiation for concentrating solar thermal power plants without storage. Solar Energy, 107: 98-112, 2014.
  • [14] M. A. Ehyaei, A. Ahmadi, M. El Haj Hassad, and T. Salameh. Optimization of parabolic throughcollector (PTC) with multi objective swarm optimization (MOPSO) and energy, exergy and economic analyses. Journal of Cleaner Production, 234: 285-296, 2019.
  • [15] J. Ruelas, D. Sauceda, J. Vargas, and R. García. Thermal and concentration performance for awide range of available offset dish solar concentrators. Applied Thermal Engineering, 144: 13-20, 2018.
  • [16] G. H. Lee. Construction of conical solar concentrator with performance evaluation, Energy Procedia, 153: 137-142, 2018.
  • [17] E. T. A. Gomes, N. Fraidenraich, O. C. Vilela, C. A. A. Oliveira, and J. M. Gordon. Aplanats and analytic modeling of their optical properties for linear solar concentrators with tubular receivers. Solar Energy, 191: 697-706, 2019.
  • [18] H. Mashaal, D. Feuermann, and J. M. Gordon. Expansive scope of aplanatic concentrators and collimators. Applied Optics, 58: F14-F20, 2019.
  • [19] J. M. Gordon, D. Feuermann, and P. Young. Unfolded aplanats for high-concentration photovoltaics, Optical letters, 33:1114-1116, 2008.
  • [20] C. Michel. Wave guide solar concentrator design with spectrally separated light. Solar Energy, 157, 2017.
  • [21] G. Wang, Y. Yao, Z. Chen, and P. Hu. Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology. Energy, 166: 256-266, 2019.
  • [22] J. Chen, L. Yang, Z. Zhang, J. Wei, and J. Yang. Optimization of a uniform solar concentrator with absorbers of different shapes. Solar Energy, 158: 396-406, 2017.
  • [23] K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif. Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation. Enhancing the performance of photovoltaic panels by water cooling, 4: 869-877, 2013.
  • [24] P. Selvakumar, P. Somasundaram, and P. Thangavel. Performance study on evacuated tube solar collector using Therminol D-12 as heat transfer fluid coupled with parabolic trough. Energy Conversion and Management, 85: 505-510, 2014.
  • [25] J. Qin, E. Hu, G. J. Nathan, and L. Chen. Simulating combined cycle gas turbine power plantsin Aspen HYSYS. Energy Conversion and Management, 152: 281-290, 2017.
  • [26] M. Sabiha. An experimental study on Evacuated tube solar collector using nanofluids. In International Conference on Advances in Science, Engineering, Technology and Natural Resources (ICASETNR-15) Sabah, Malaysia, volume 2, pages 42-49.
  • [27] H. Fathabadi. Novel solar collector: Evaluating the impact of nanoparticles added to the collector’s working fluid, heat transfer fluid temperature and flow rate. Renewable Energy, 2019.
  • [28] J. Spelling, A. Gillo, M. Romero, and J. Gonzalez-Aguilar. Simulation and analysis of humid air turbine cycle based on aeroderivativethree-shaft gas turbine. A High-efficiency Solar Thermal Power Plant using a Dense Particle Suspension as the Heat Transfer Fluid, 69: 1160-1170, 2019.
  • [29] M. M. Heyhat, M. Valizade, Sh. Abdolahzade, and M. Maerefat. Thermal efficiency enhancement of direct absorption parabolic trough solar collector (DAPTSC) by using nanofluid and metal foam. Energy, 192: 1166626, 2020.
  • [30] A. García, R. Herrero-Martin, J. P. Solano, and J. Pérez-García. The role of insert devices on enhancing heat transfer in a flat-plate solarwater collector. Applied Thermal Engineering,132: 479-489, 2018.
  • [31] D. Jin, S. Quan, J. Zuo, and S. Xu. Numerical investigation of heat transfer enhancement in asolar air heater roughened by multiple V-shapedribs. Renewable Energy, 33 (2019): 78-88, 2018.
  • [32] F. A. S. da Silva, D. J. Dezan, A. V. Pantaleão, and L. O. Salviano. Longitudinal vortex generator applied to heat transfer enhancement of a flat plate solar water heater. Applied Thermal Engineering,158: 113790, 2019.
  • [33] M. A. Sharafeldin, G. Gróf, E. Abu-Nada, and O. Mahian. Evacuated tube solar collector performance using copper nanofluid: Energy and environmental analysis. Applied Thermal Engineering, 162: 114205, 2019.
  • [34] W. Liu, Z. Yang, B. Zhang, and P. Ly. Experimental study on the effects of mechanical vibration on the heat transfer characteristics of tubular laminar flow. International Journal of Heat and Mass Transfer, 115 (Part A): 169-179, 2017.
  • [35] M. Setareh, M. Saffar-Avval, and A. Abdullah. Experimental and numerical study on heat transfer enhancement using ultrasonic vibration in adouble-pipe heat exchanger. Applied Thermal Engineering, 159: 113867, 2019.
  • [36] L. Cheng, T. Luan, W. Du, and M. Xu. Heat transfer enhancement by flow-induced vibration in heat exchangers, International Journal of Heat and Mass Transfer, 52: 1053-1057, 2009.
  • [37] A. Hosseinian and A. H. Meghdadi Isfahani. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger. Heat and Mass Transfer, 54: 1113-1120, 2018.
  • [38] K. Grzywnowicz, L. Bartela, L. Remiorz, and B. Stanek. Modeling of influence of vibrationon intensification of heat transfer within the absorber of the vacuum solar collector. In XIV Research and Development in Power Engineering Conference, volume 137, page 01034. E3S Web of Conferences, 2019.
  • [39] Solutia-Europe.Therminol®VP-1 High Performance Highly Stable Heat Transfer Fluid, 2016.
  • [40] C. G. Speziale, S. Sarkar, and T. B. Gatski. odeling the Pressure-Strain Correlation of Turbulence: an Invariant Dynamical Systems Approach. Journal of Fluid Mechanics, 227: 245-272, 1991.
  • [41] ANSYS. ANSYS CFX- Solver Theory Guide. Release 15.0, 2013.
  • [42] K. Wood, B. Whitney, J. Bjorkman, and M. Wolff. Introduction to Monte Carlo Radiation Transfer. The Astronomy Group of University of St Andrews, 2013.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b172dabf-8108-458c-bf7d-fdac95b2f988
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.