Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Unfortunately, fibrous composite materials' mixed-mode fracture toughness (Keff) was measured using inappropriate through-thickness cracked (TTC) specimens. The problem with such specimens is the ignorance of the fibers in the pre-notch surfaces, i.e., no fiber bridging behind the crack tip. In the present paper, a real Keff of fiber-reinforced concrete (FRC) was experimentally determined using matrix cracked (MC) specimens. Traditional (TTC) specimens were also adopted for comparison. The effect of fiber length (35 mm, 50 mm, and hybrid fibers, 50% from each length) and mode of mixity (Me), Me = 0, 1/4, and 1/2 were studied. Hooked end steel fibers of a volume fraction equal to 1% were used. All cracked beams with a crack-length-to-beam-depth ratio equal to 0.3 were tested under three-point bending in mode I and mixed-mode. The span/depth ratio was equal to two for all specimens. Since there is no equation to predict the Keff of MC specimens and the inapplicability of Griffith's theory to predict the Keff due to the difference in crack paths, new realistic procedures were suggested to overcome this dilemma. The results indicated that MC specimens recorded a lower crack initiation load than the peak load. In contrast, the crack initiation load coincides with the peak load in the case of TTC specimens. This reflected the role of steel fibers behind the crack tip in retarding the specimens to reach their ultimate capacity after crack initiation. Keff increased with increasing Me. Although long fibers recorded higher peak load and energy, their effect on Keff of MC FRC specimens was marginal due to the minor effect of fiber length on the crack initiation loads. The MC specimen is a realistic approach for estimating the Keff of FRC.
Czasopismo
Rocznik
Tom
Strony
art. no. e168, 2022
Opis fizyczny
Bibliogr. 62 poz., fot., rys., tab., wykr.
Twórcy
autor
- Materials Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
autor
- Materials Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
autor
- Materials Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
autor
- Materials Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
autor
- Materials Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
Bibliografia
- [1] A.E. Naaman, Fiber reinforced cement and concrete composites, 1st ed., Techno-Press 3000, Sarasota, Florida 34231, USA, 2018.
- [2] Othman MA, El-Emam HM, Seleem MH, Sallam HE, Moawad M. Flexural behavior of functionally graded concrete beams with different patterns. Arch Civ Mech Eng. 2021;21(4):1–6. https://doi.org/10.1007/s43452-021-00317-0.
- [3] Knott JF. Fundamentals of fracture mechanics. London: Butter-worths & Co publishers Ltd; 1976.
- [4] Hillerborg A. A model for fracture analysis, Report TVBM 3005. Sweden: University of Lund; 1978.
- [5] Jenq Y, Shah SP. Two parameter fracture model for concrete. J Eng Mech. 1985;111(10):1227–41. https://doi.org/10.1061/(asce)0733-9399(1985)111:10(1227).
- [6] Bažant ZP, Oh BH. Crack band theory for fracture of concrete. Matériauxet Constr. 1983;16(3):155–77. https://doi.org/10.1007/bf02486267.
- [7] Bažant ZP, Kazemi MT. Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete. Int J Fract. 1990;44(2):111–31. https://doi.org/10.1007/BF00047063.
- [8] Hillerborg RT. The theoretical basis of a method to determine the fracture energy GF of concrete. Mater Struct. 1985;18(4):291–6.
- [9] Qian X, Yang W. Initiation of ductile fracture in mixed-mode I and II aluminum alloy specimens. Eng Fract Mech. 2012;93:189–203. https://doi.org/10.1016/j.engfracmech.2012.06.018.
- [10] Laukkanen, K. Wallin, R. Rintamaa. Evaluation of the effects of mixed mode I-II loading on elastic-plastic ductile fracture of metallic, In: Mixed-mode crack behavior. ASTM special technical publication 1359, Atlanta, USA, 1999. 3–20.
- [11] Fayed AS, Abd-Alhady AA, Sherbini HS, Sallam HEM. Crack path in steel fiber reinforced concrete composite under mixed mode. ASJCE Fac Eng Ain Shams Univ. 2008;1(1):17–26.
- [12] Arikan H. Fracture behavior of textile glass fiber reinforced polymer concrete according to mixed-mode. J Thermoplast Compos Mater. 2012;25(6):663–77. https://doi.org/10.1177/0892705711412649.
- [13] Carpinteri R. Brighenti, Fracture behaviour of plain and fiber-reinforced concrete with different water content under mixed mode loading. Mater Des. 2010;31(4):2032–42. https://doi.org/10.1016/j.matdes.2009.10.021.
- [14] Zhang HD, Xu XS. Research on test of fracture toughness and fracture criterion of crack of mixed mode I and II of steel fiber concrete. Adv Mater Res. 2013;671:1688–91. https://doi.org/10.4028/www.scientific.net/AMR.671-674.1688.
- [15] Fett T. Mixed-mode stress intensity factors for three-point bending bars. Int J Fract. 1991;48(4):67–74. https://doi.org/10.1007/bf00012920.
- [16] He MY, Hutchinson JW. Asymmetric four-point crack specimen. Appl Mech. 2000;67(1):207–9. https://doi.org/10.1115/1.321168.
- [17] Murakami Y. Stress intensity handbook. Oxford, New York: Pergamon Press; 1987.
- [18] Zimmermann EA, Launey ME, Barth HD, Ritchie RO. Mixed-mode fracture of human cortical bone. Biomaterials. 2009;30(29):5877–84. https:// doi. org/ 10. 1016/j. bioma teria ls.2009.06.017.
- [19] Shahani AR, Tabatabaei SA. Computation of mixed mode stress intensity factors in a four-point bend specimen. Appl Math Model. 2008;32(7):1281–8. https://doi.org/10.1016/j.apm.2007.04.001.
- [20] Jorbat MH, Hosseini M, Mahdikhani M. Effect of polypropylene fibers on the mode I, mode II, and mixed-mode fracture toughness and crack propagation in fiber-reinforced concrete. Theoret Appl Fract Mech. 2020;109:102723. https://doi.org/10.1016/j.tafmec.2020.102723.
- [21] Razmi MM. Mirsayar, On the mixed mode I/II fracture properties of jute fiber-reinforced concrete. Constr Build Mater. 2017;148:512–20. https://doi.org/10.1016/j.conbuildmat.2017.05.034.
- [22] Li WH, Peters WFR. Two-phase crack propagation approach to fatigue life prediction of preloaded notched members. Eng Fract Mech. 1986;23(5):793–801. https://doi.org/10.1016/0013-7944(86)90091-3.
- [23] Li V. CTD criterion applied to mixed mode fatigue crack growth. Fatigue Fract Eng Mater Struct. 1989;12(1):59–65. https://doi.org/10.1111/j.1460-2695.1989.tb00508.x.
- [24] Hammouda MMI, Sallam HEM. An elastic-plastic finite element simulation of crack tip deformation in fatigue. ICF8, Kiev. In:Advances in Fracture Resistance in Materials, 1996, Int.Congress on Fracture, Vol. 2, Tata McGraw-Hill, New Delhi, India, 3–10.1993.
- [25] Hammouda MMI, Ahmad SE, Sallam HEM. Correlation of fatigue crack growth by crack tip deformation behavior. Fatigue Fract Eng Mater Struct. 1995;18(1):93–104. https://doi.org/10.1111/j.1460-2695.1995.tb00144.x.
- [26] Hammouda MMI, Seleem MH, Sallam HEM, Ahmad SE. Front development of a long fatigue crack during its growth. Fatigue Fract Eng Mater Struct. 1997;20(6):849–62. https://doi.org/10.1111/j.1460-2695.1997.tb01529.x.
- [27] Hammouda MMI, Ahmad SE, Seleem MH, Sallam HEM. Fatigue crack growth due to two successive single overloads. Fatigue Fract Eng Mater Struct. 1998;21(12):1537–47. https://doi.org/10.1046/j.1460-2695.1998.00117.x.
- [28] Hammouda MMI, Ahmad SE, Sherbini AS, Sallam HEM. Deformation behaviour at the tip of physically short fatigue crack due to a single overload. Fatigue Fract Eng Mater Struct. 1999;22(2):145–51.
- [29] Hammouda MMI, Osman HG, Sallam HEM. Mode I notch fatigue crack growth behaviour under constant amplitude loading and due to the application of a single tensile overload. Int J Fatigue. 2004;26(2):183–92. https:// doi. org/ 10. 1016/ S0142- 1123(03)00093-8.
- [30] Hammouda MMI, Sallam HEM, Osman HG. Significance of crack tip plasticity to early notch fatigue crack growth. Int J Fatigue 2004;26(2):173–82. https:// doi. org/ 10. 1016/ S0142- 1123(03)00094-X.
- [31] El-Emam HM, Salim HA, Sallam HE. Composite patch configuration and prestraining effect on crack tip deformation and plastic zone for inclined cracks. J Compos Constr. 2016;20(4):6002. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000655.
- [32] El-Emam HM, Salim HA, Sallam HE. Composite patch configuration and prestress effect on SIFs for inclined cracks in steel plates. J Struct Eng. 2017;143(5):6229. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001727.
- [33] Nitschke A. Modeling of load-bearing behavior of fiber-reinforced concrete tunnel linings. Shotcrete Mag. 2017;19(2):28–34.
- [34] El-Sagheer I, Abd-Elhady AA, Sallam HEM, Naga SA. An assessment of ASTM E1922 for measuring the translaminar fracture toughness of laminated polymer matrix composite materials. Polymers. 2021;13(18):3129. https://doi.org/10.3390/POLYM13183129.
- [35] ASTM. ASTM E1922-04. Standard Test Method for Translaminar Fracture Toughness of Laminated and Pultruded Polymer Matrix Composite Materials; ASTM: West Conshohocken, PA, USA, 2015.
- [36] Elakhras AA, Seleem MH, Sallam HEM. Intrinsic fracture toughness of fiber reinforced and functionally graded concretes: an innovative approach. Eng Fract Mech. 2021;258:8098. https://doi.org/10.1016/j.engfracmech.2021.108098.
- [37] Elakhras AA, Seleem MH, Sallam HEM. Fracture toughness of matrix cracked FRC and FGC beams using equivalent TPFM. Fratturaed Integrità Strutturale. 2022;16(60):73–88. https://doi.org/10.3221/IGF-ESIS.60.06.
- [38] Elakhras AA, Seleem MH, Sallam HEM. Real fracture toughness of FRC and FGC: size and boundary effects. Arch Civ Mech Eng. 2022;22(2):1–17. https://doi.org/10.1007/s43452-022-00424-6.
- [39] Ali AYF, El-Emam HM, Seleem MH, Sallam HEM, Moawad M. Effect of crack and fiber lengths on mode I fracture toughness of matrix-cracked FRC beams. Constr Build Mater. 2022;341: 127924. https://doi.org/10.1016/j.conbuildmat.2022.127924.
- [40] Sallam HEM. Crack arresters in steel structure components, M. Sc. Thesis, Zagazig Univ., Egypt, 1990. https://doi.org/10.13140/RG.2.2.14385.43369.
- [41] Wang H, Wu G, Jiang J. Fatigue behavior of cracked steel plates strengthened with different CFRP systems and configurations. J Compos Constr. 2015. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000647,04015078.
- [42] ACI Committee 544–3R, Guide for Specifying, Proportioning, and Production of Fiber-reinforced Concrete, American Concrete Institute. 2008.
- [43] BS EN 12390–3, Testing hardened concrete- Compressive strength of test specimens, Part 3: British Standards. 2019.
- [44] BS EN 12390–6, Testing hardened concrete. Tensile splitting strength of test specimens, Part 6: British Standards. 2009.
- [45] Barragan B, Gettu R, Agullo L, Zerbino R. Shear failure of steel fiber-reinforced concrete based on push-off tests. ACI Mater J. 2006;103(4):251.
- [46] Jongvivatsakul P, Attachaiyawuth A, Pansuk W. A crack-shear slip model of high-strength steel fiber-reinforced concrete based on a push-off test. Constr Build Mater. 2016;126:924–35. https://doi.org/10.1016/j.conbuildmat.2016.09.080.
- [47] Mubaraki M, Osman SA, Sallam HEM. Effect of RAP content on flexural behavior and fracture toughness of flexible pavement. Latin Am J Solids Struct. 2019;16(3):1–15. https://doi.org/10.1590/1679-78255516.
- [48] Chang DI, Chai WK. Flexural fracture and fatigue behavior of steel-fiber-reinforced concrete structures. Nuclear Eng Des. 1995;156(1–2):201–7. https:// doi. org/ 10. 1016/ 0029- 5493(94)00946-V.
- [49] Qing L, Li Y, Wang X, Yu K, Mu R. Investigation of mixed-mode fracture of aligned steel fibre reinforced cementitious composites. Int J Fract. 2021;228(2):159–78. https:// doi. org/ 10. 1007/s10704-021-00527-w.
- [50] Nunes LC, Reis JM. Experimental investigation of mixed-mode-I/II fracture in polymer mortars using digital image correlation method. Latin Am J Solids Struct. 2014;11:330–43. https://doi.org/10.1590/s1679-78252014000200011.
- [51] Sallam HEM, Mubaraki M, Yusoff NI. Application of the maximum undamaged defect size (d max) concept in fiber-reinforced concrete pavements. Arab J Sci Eng. 2014;39(12):8499–506. https://doi.org/10.1007/s13369-014-1400-4.
- [52] Abou El-Mal HSS, Sherbini AS, Sallam HEM. Mode II fracture toughness of hybrid FRCs. Int J Concrete Struct Mater. 2015;9(4):475–86. https://doi.org/10.1007/s40069-015-0117-4.
- [53] Carpinteri A. Stability of fracturing process in RC beams. J Struct Eng. 1984;110(3):544–58. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:3(544).
- [54] Baluch MH, Azad AK, Ashmawi W. Application of fracture mechanics to reinforced concrete. In Carpinteri A (Ed), CRC Press, p. 24 (1994).
- [55] Lub KB, Padmoes T. Mechanical behavior of steel fiber-cement mortar in tension and flexure interpreted by means of statistics. Mater J. 1989;86(1):16–28.
- [56] Gasparini DA, Verma D, Abdallah A. Postcracking tensile strength of fiber reinforced concrete. Mater J. 1989;86(1):10–5. https://doi.org/10.14359/1812.
- [57] Stroeven P, Hu J. Effectiveness near boundaries of fibre reinforcement in concrete. Mater Struct. 2006;39(10):1001–13. https://doi. org/10.1617/s11527-006-9101-4.
- [58] Zandi Y, Husem M, Pul S. Effect of distribution and orientation of steel fiber reinforced concrete. In: Proceedings of the 4th WSEAS international conference on Energy and development-environment-biomedicine. pp. 260–264 (2011).
- [59] Swamy RN. Fibre reinforcement of cement and concrete. Matériauxet Constr. 1975;8(3):235–54. https://doi.org/10.1007/BF02475172.
- [60] Romualdi JP, Mandel JA. Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement. J Proc. 1964;61(6):657–72.
- [61] Gettu R, Gardner DR, Saldivar H, Barragán BE. Study of the distribution and orientation of fibers in SFRC specimens. Mater Struct. 2005;38(1):31–7. https://doi.org/10.1617/14021.
- [62] Wille K, Tue NV. Parra-Montesinos, Fiber distribution and orientation in UHP-FRC beams and their effect on backward analysis. Mater Struct. 2014;47(11):1825–38. https://doi.org/10.1617/s11527-013-0153-y.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b171b3fc-9f0c-4f5a-bc7f-c96ba802543d