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Abstract

In this study, the generation of temporal synchrony within an artificial neural network is

examined considering a stochastic synaptic model. A network is introduced and driven

by Poisson distributed trains of spikes along with white-Gaussian noise that is added

to the internal synaptic activity representing the background activity (neuronal noise).

A Hebbian-based learning rule for the update of synaptic parameters is introduced. Only

arbitrarily selected synapses are allowed to learn, i.e. update parameter values. Results

show that a network using such a framework is able to achieve different states of syn-

chrony via learning. Thus, the plausibility of using stochastic-based models in modeling

the neural process is supported. It is also consistent with arguments claiming that syn-

chrony is a part of the memory-recall process and copes with the accepted framework in

biological neural systems.

1 Introduction

Temporal coherence in the firing activity of

groups of neurons is widely observed as a common

feature throughout the neocortex [40]. The analy-

sis of the responses of stimulated neurons of cat’s

visual cortex [18] confirmed that activated neurons

can reliably produce synchronous discharge with

the precision of a few milliseconds. Investigating

the key factors in exhibiting such synchronous ac-

tivity [13] related these observations to both the

pure excitatory and the intrinsic time course of

synaptic interactions. This coherence is believed

to play an important role in neural coding and com-

putational principles [34]. Synaptic background ac-

tivity (namely the noise) was reported through the

theoretical and experimental studies of synchronous

activities as a key feature and it was emphasized

that such background activity can affect driving co-

herent spiking activity [10, 23, 19, 7].

Although the real mechanism underlying neu-

ronal synchrony (or temporal correlation) is not

completely investigated [40], the issue gained more

importance in the research since it has been viewed

as a plausible solution to the ”binding problem”

[35, 12, 32] discussed in [41]. These studies ar-

gued that such neuronal temporal synchrony could

allow the information about stimuli to be conveyed

as temporal relations between neural sites and pro-

vide the basis for integrating different features rep-

resenting the same object. Thus, binding can be de-

fined as the ability of the biological neural system,

in terms of inherited flexibilities, to construct higher

level symbols by combining more elementary sym-

bols [37].

States of synchrony are involved when any

group of neurons realize a degree of synchronous

activity, consequently this group of neurons exhibits

a state of mental activity [41]. By entertaining such

conceptual assumption and in order to observe this

state, this temporal synchrony (or temporal correla-

1In the referred study, the mathematically known cross-correlation was not meant explicitly, instead the general sense of tem-

poral correlation was meant
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tion)1 is defined over a time period Tsync. With

this period of time (or Psychological Moment) a

brain, mental or neurological state is defined. At

times greater than Tsync one sees only a sequence

of states (state history). Below this time window,

a state cannot be defined. The need to maintain

this state of temporal correlation for periods greater

than a few milliseconds was supported by the ar-

gumentation in [37] in order to confine the behav-

ioral conditions fitting the higher brain functions

and difficult tasks that require sustained level of ac-

tivity. In this sense, states of synchrony are be-

lieved to be involved in the processing of sensory

inputs [11]. Moreover, it is argued in [38] that at-

tention and awareness emerge from the interacting

dynamics in terms of synchrony states among dis-

tributed neural ensembles. Von der Malsburg stated

that plausible values for this time window to define

such state could be in the range of 50 - 200 millisec-

ond and may be also extended to involve minutes if

other mental aspects are in concern [41]. Within

this time window, the actual signal fluctuations are

not relevant (for a complete review please refer to

[32, 37, 1]).

The generation of synchrony in artificial neural

networks (ANN) is addressed in many theoretical

and numerical studies, e.g. [13, 4, 31, 2, 42, 26].

These studies confirmed the ability of an ANN to

realize the temporal synchrony on the time scales

of a few milliseconds even with sharp synchroniza-

tion on the time scale of single spikes. In general,

these studies simulated a population of integrate-

and-fire (IAF) neurons with adequate interconnec-

tivity. Their discussions highlighted the major role

of excitatory interconnections to achieve a certain

degree of synchronous activity. Tsodyks et al pre-

sented a notable study in [40]. They considered

the non-linear (frequency dependent) synapses for

the generation of synchronous firing. Their re-

sults showed that the incorporation of nonlinear

synapses in recurrent networks provide the basis for

the emergence of short-time synchronous activity.

However, it has been shown that determinis-

tic representation of the neural actions does not

model the biological neural behavior realistically
[24, 28, 29]. In addition, Kröger showed in [20] that

probabilistic option in regard to neuroscience offers

advantages over the deterministic one. A stochas-

tic pulsed-coupled neural network was presented

in [5] showing synchronous and asynchronous be-

havior. A reduced stochastic dynamic model of

an interconnected population of excitatory neurons

with activity-dependent synaptic depression was

proposed in [15], the discussion was focused on

the bistability of voltage activities as up and down

states. This is believed to be also related to the

states of temporal synchrony within the neural en-

semble. However, these studies and other did not

consider the potential effects of stochastic dynamic
synapses on synchronization of neural activity in

ANN.

In the general case of modeling a biologically-

observed neural aspect, we proposed that the

stochastic modeling of neuronal and synaptic activ-

ity are better than the deterministic one; Because

the stochastic approaches are able to account for the

essence of neural variability [8]. This was clearly

elucidated in [16] trying to predict the exact spike

timing of a thalamic neuron. This statement was

further supported by our results in the international

Quantitative Single-Neuron Modeling 20092 (suc-

ceeding one of the 2008-challenge [17]). In this

challenge and using our stochastic synaptic model

[8], we have defined the new benchmark in predict-

ing the spike timing of a single post-synaptic neuron

in the lateral geniculate nucleus knowing the spike

train on the pre-synaptic side (i.e. in a retinal gan-

glion cell) [9, 30].

In [8] we have proposed a basic framework with

a modified version of the basic stochastic synap-

tic model (presented in [24]) coupled to a leaky

IAF neuron. Our preliminary results showed that

an ANN with the introduced framework was able to

realize special regimes of activity with synchronous

discharge over biologically tenable periods of time.

Here, we report the detailed description and anal-

ysis of this framework along with the involved re-

sults. Specifically, in this paper, we investigate the

ability of a network comprising IAF neurons and

stochastic synapses to realize the concept of syn-

chrony (the temporal correlations) between the sig-

nals of grouped neurons as states of synchronous

activity. The goals are: a) to construct an ANN

so that when driven by trains of spikes should be

able to transform input signals combined with back-

ground synaptic activity (here introduced as synap-

2http://incf.org/community/competitions/spike-time-prediction/2009/
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tic noise) into correlated outputs and b) to show

the ability to sustain such level of synchrony over

a considerable time course Tsync. For this task,

a Hebbian-based Reinforcement-like learning algo-

rithm is introduced as well.

2 The Model

Neuron Model:

Neurons are modeled as leaky-IAF neurons

usually used in such type of simulations [40]. Each

neuron is described by its voltage membrane poten-

tial V , with the following dynamics:

τV
dV
dt

=−V +Epsp + ε, (1)

where τV is the membrane time constant set at 20

msec, and Epsp is the total observed excitatory post-

synaptic potential from all pre-synaptic terminals. ε
is the added white-Gaussian noise3 representing the

background synaptic activity, with 〈ε〉= 0. When V
exceeds a certain threshold Vth, a spike is generated

and V is reset to a resting value, Vrest =−70mV.

Synaptic Model:

We have first introduced the modified stochas-

tic synaptic model (MSSM) in [8, 9]. According

to this model, each synaptic connection is mod-

eled as a stochastic activity-dependent connections.

This model estimates the transmission probability

of an arriving action potential, i.e. spike, from a

presynaptic neuron via a synapse to a postsynap-

tic neuron. The probability-of-release involved is

governed by two counteracting mechanisms: facili-

tation and depression. Facilitation reflects the Ca2+

concentration in the presynaptic neuron, while de-

pression represents the effect of the concentration

of ready-to-release vesicles in the pre-synaptic neu-

ron. The probability that the ith spike in the spike

train triggers the release of a vesicle at time ti at a

given synapse is given by:

P(ti) = 1− e(−C(ti)·V (ti)), (2)

where C(ti) and V (ti) represent the facilitation and

depression mechanisms respectively at ti. C(t) and

V (t) are expressed as [29]:

C(t) =Co +∑
ti
αe−(t−ti/τC) (3)

V (t) = max(0, Vo−∑
ti

e−(t−ti/τC)) (4)

In eq. 3, τC and α represent the decay constant

and the magnitude of the response respectively. Co

represents the initial concentration of Ca2+ in the

pre-synaptic terminal. In eq. 4, V (t) is the expected

number of vesicles of neurotransmitter molecules

(Nt) in the ready-for-release pool at time t. Vo is

the max. number of vesicles that can be stored in

the pool. τV is the time constant for refilling the

vesicles. For the simulation, a discrete version of

equations 3 and 4 adopted from [28] is used. Thus,

these equations read:

C(n) = α ·θ(n−1)

+kC · (C(n−1)−Co)+Co, (5)

V (n) =−P(n−1) ·θ(n−1)

+kV · (V (n−1)−Vo)+Vo. (6)

In eq. 5, kC corresponds to the decay time con-

stant, τC, of the response to a single incoming spike.

kV corresponds to the time constant, τV , for refilling

the vesicles. θ(n) represents the instantaneous input

firing rate observed at the synapse at time instant n;

it equals then Δ−1
isi , where Δisi is the last observed

inter-spike-interval (ISI).

Recalling that the binding process of Nt on the

postsynaptic membrane induce Epsp. Thus, Epsp is

related to this process through the following dy-

namics [27]:

τepsp
dEpsp

dt
=−Epsp +Nt , (7)

where τepsp is a decay time-constant. Nt is the

concentration of the Nt in the synaptic cleft. We

assume that the latter can be estimated by trac-

ing the amount of vesicles of Nt that remains in

the presynaptic neuron, V (t), over time. We intro-

duce the following equation to estimate Nt(n) and

consequently couple the SSM with the IAF neuron

model:

Nt(n) = max(0, V (n)−V (n−1))

+Nt(n−1)e−Δisi/τNt (8)

3The MATLAB function (wgn) is used with overall 0 db power over 1 ohm load impedance
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In eq. 8, Nt at any time instant n is the summation

of: a) the estimated amount of Nt added with each

release at any time step n (or the decrease in V (n)
over the time step); where the max(. . .) avoids neg-

atives and b) the amount of Nt that remains in the

cleft from previous releases. The decay with τNt re-

flects the biological cleaning action, or the removal

of the Nt from the cleft. Equations 1 and 7 are im-

plemented as discrete forms introduced by [27] us-

ing Impulse Invariant Transform in order to facil-

itate the computations (Please refer to the articles

[21, 27] for the derivation).

3 Network and Simulation

Up to our knowledge, the biologically accepted

network size, in which temporal correlation can be

observed and effectively utilized, is not precisely

specified [40]. However, there are some hypotheti-

cal suggestions discussing the tenability of the net-

work size. Singer, for example, analyzed the major

factors affecting the ability of a group of neurons

to exhibit synchronous activity [37]. He pointed

out that the network size could be as small as two

mutually coupled neurons and may be up to 100

neurons. Herzog and Gerstner argued that if syn-

chrony is an essential feature for the brain activities,

it should also be feasible in small networks [14].

They called this ”the small network argument”, or

the new benchmark for consciousness. Thus, they

reported, there is a minimal model or a small net-

work that satisfies the criteria underlying conscious-

ness, e.g. temporal synchrony, but is not conscious

itself. They stated that groups of up to seven neu-

rons are sufficient to realize memory, learning, or

synchrony. Based on the analysis done in [6], a

network of two neurons should be able to achieve

spike-to-spike synchrony when enough mutual con-

ductance is available.

Thus, two network structures are used in this

study. A schematic of the first introduced network

is in Fig. 1(a) with the input being fed only to the

first neuron, N1. The network consists of 3 mu-

tually interconnected neurons with only excitatory

synapses. Also a bigger network is used with 8 neu-

rons as in Fig. 1(b). In the latter one, the input is

also fed to N1, and similar to the smaller network,

the feed back to the input neuron is only possible

from the neighboring neurons; in this case from N2,

N3 and N4. All synaptic connections are MSSM

synapses as described in section 2 supported with

white Gaussian noise generators.

The input is a set of 200 trains of spikes, each

with a Poisson distributed inter-spike intervals for

an epoch of 150 and 100 msec at 1 msec discretiza-

tion for the 3 neuron and the 8 neuron networks re-

spectively. This time epoch is arbitrarily used as a

median value for the proposed time scale of Tsync
over which synchrony is plausible. The spike gen-

erator is adjusted to generate spikes with a maxi-

mum overall firing-rate of 300 Hz. Meanwhile, at

each synapse a white Gaussian noise is added lo-

cally to the induced postsynaptic potential from this

synapse. The level of the noise is modulated via

simulated linear amplification.

For representing synchrony, the cross-

correlation based measures are accepted in the de-

tection of similarities in responses and for syn-

chrony [40, 26]. Correlograms are not considered

in this study based on reviews to the analytical re-

liability of its results [3]. A correlation-based mea-

sure is introduced in [33] that calculates the cross-

correlation coefficient between neural responses af-

ter applying a Gaussian filtration on the responses.

Here, the max. of cross-correlation coefficients be-

tween the filtered signals is used to indicate the

degree of synchrony. The width of the Gaussian

filter is chosen to be equal to the chosen neuronal

refractory period of 2 msec.

4 Learning Rule

Generally, if no learning is implemented, the in-

put signal and noise are fed to the network. At the

end of each epoch, the mean Rm of the max. cross-

correlation coefficients is calculated from all pos-

sible combinations between the responses from the

three neurons. For example in the case of the net-

work with 3 neuron Rm = mean(R1,R2,R3), where

R1 is the max. cross correlation coefficient between

the Gaussian filtered versions of Y1 and Y2. Simi-

larly R2 and R3, as in Fig. 1(a). An analogous ap-

proach is used with the bigger network.

A Hebbian-based learning rule is introduced in

[22, 27] showing how both the timing parameters

and constants can be updated based on the spik-

ing activity of pre- and postsynaptic neurons. Here,
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(a) (b)

Figure 1. Network schematic. a) 3 neuron network. The dashed lines are those synapses permitted to be

trained. Double arrowed connections represent a mutual connection. Horizontal-right oriented arrows:

output signals from each neuron: Y1, Y2 and Y3. Vertical-two-headed arrows: the corresponding

cross-correlation coeff.: R1, R2 and R3. The trained synapses are from N1 to N2 and N3. b) 8 neuron

network. The dashed lines are those synapses permitted to be trained. Double arrowed connections

represent a mutual connection. The details of the outputs and the calculation of cross correlation are

omitted for clarity. The trained synapses are the synapses from N1 to N2, N3 and N4

this rule is extended to MSSM parameters. Specif-

ically, the dynamics of synaptic or neural activities

are governed through the contribution of electro-

chemical mechanisms. Each of them is represented

via a value, m, i.e. α in eq. 3 represents the max.

allowed incurrent of Ca+2 ions to the presynaptic

terminal [24]. A mechanism m could be either exci-

tatory or inhibitory. According to the pre- and post-

synaptic activity, the value of m is either increased

or decreased following the Hebbian approach [22].

The update of the contribution values could be ba-

sically mathematically formed as:

mnew = (1± r)mcurrent, (9)

where r is the learning rate. In the proposed MSSM,

such parameters are for example τNt ,τV ,τC,α, Co

and Vo.

We introduce a feedback parameter, K, that rep-

resents the advance in the direction of getting both

more and stable synchrony between the responses

(i.e. a higher cross-correlation coefficient). Thus, it

is the difference in the observed synchrony Rm from

the current run and the previous one, let

K = Rmcurrent
−Rmprevious

(10)

K is used as a modulator to the learning rate. Thus,

the learning rule can be rewritten:

minew = (1± r ·K) ·micurrent
(11)

K can reverse the direction of the updating process

of the parameters since it is a signed value, and can

either accelerate or decelerate the learning process.

This learning rule has the implicit objective of cor-

relating the outputs corresponding to the same input

properties. It emphasizes the sensitivity of the net-

work to temporal and statistical properties embed-

ded in input signals [27]. In this study, only forward

MSSM synapses are allowed to update their param-

eters via this rule as illustrated in Fig. 1(a) and 1(b).

5 Results

Figures 2(a) and 2(b) illustrate the performance

of the networks during the simulation with and

without learning. In each subfigure, the two dif-

ferent traces can be taken as an indicator for two

neuronal states of synchrony: Ground-State (Learn-

ing Off) and New-State (Learning On). The network

needs about 20 - 40 learning runs until it reaches the

New-State. The introduced networks with MSSM

are able to show two states of synchrony over a time

window of 150 and 100 msec in 3 neuron and 8

neuron network respectively. In this case the noise

intensity is held constant and this noise intensity

is referred as the zero-level white Gaussian noise,

wgn(0).

There may be no clear analytical evidence that
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biological neural systems can turn learning on and

off. However, the logical analysis of cognitive con-

trol tasks in [7] still accepts that the biological neu-

ral circuitry can perform something similar to the

control of task sharing and non-physical rewiring of

neural ensembles, e.g. the control over the flow of

information. This makes the idea of using the on/off

learning rule acceptable. In the following, however,

the use of switching learning On/Off is avoided by

using the intensity of the noise as a controlling fac-

tor. This is a direct consequence of the experimen-

tal and theoretical analysis mentioned before in the

introduction.

In order to view the realization of the synchrony

states in parallel with the involved synaptic dy-

namics, using only the 3 neuron network, a higher

intensity of noise is fed to the network, wgn(1),
where wgn(1) > 2wgn(0). Furthermore, one more

randomly chosen synapse is allowed to be tunned.

This is meant to allow for non planned transition

between the internal available states of the network,

if exists, to take place. In other words, the objec-

tive of this setup is to observe how the network be-

haves in general and to test if it is able to accomplish

any other available stable state of synchrony than

the first reachable one. In Fig. 3(a), the observed

synchrony level is shown. The network is able to

sustain both of the states defined before keeping

learning on along the entire simulation. The ver-

tical dashed lines show when the network decided

to change its state from the upper synchrony level

to the lower one. Within the dashed lines, there is a

finite overshoot in the synaptic strength value. We

interpret this disturbance to be the search for the

new stable state as the network is pushed out of the

first stable state.

However, a network that achieves only syn-

chrony is not so useful unless it can desynchronize

its activity [4]. Hence, the ability of the network

to desynchronize itself is also investigated. By set-

ting the input to zero, the only remaining input is

the noise which is equal for all synapses. Thus, the

neurons start with typical firing patterns, this can be

(obviously) seen in Fig. 3(b), since the two traces of

the cross-correlation coefficient start almost with a

value of 1. Since learning is on, and while the net-

work is trying to reach a general stable level of syn-

chrony, the networks desynchronized itself reaching

a middle level near those upper ones achieved as in

Fig. 3(b).

6 Discussion and Conclusion

The simulations presented here demonstrate

that networks of neurons interconnected with

stochastic synapses have a real tendency to realize

special regimes of activity with synchronous dis-

charge over biologically tenable periods of time.

The simulation here is restricted to excitatory con-

nections based on the mentioned discussion in the

introduction section, however, the role of synap-

tic depression or specific inhibitory connections in

case of using stochastic synapses needs further in-

vestigation.

Considering the network size in this study, it

cannot represent a cortical minicolumn [40] con-

sisting of neurons, however, it could be viewed, in

the context of synchronous activity, to have similar

receptive field properties [1]. Other possibilities are

issues of further study, e.g. it is expected that in

larger simulated networks, such as a cortical mini-

and hyper-column, where interconnections between

neurons reflect their receptive field properties, other

profiles of activity, may be with multiple internal

states or with shorter time course, could exist.

As for the learning algorithm, and up to our

knowledge, there may be no clear analytical evi-

dence that biological neural systems can turn learn-

ing on and off. However, the logical analysis as in

[7] still accepts that the biological neural circuitry

can perform something similar to control, e.g. the

control over the flow of information, the task shar-

ing and non-physical rewiring of neural ensembles.

This makes the idea of using the on/off learning rule

acceptable.

In this paper, an ANN of IAF neurons coupled

via MSSM synapses is introduced. In case of the

evoked simulations, the network is driven by Pois-

son distributed trains of spikes and white-Gaussian

noise. The latter is fed to synaptic activities. Con-

sidering that the Poisson distributed input repre-

sents a neural activity that carries certain informa-

tion, the change in the level of synchrony could

be seen as if the network, is likely to be, memo-
rizing or internally recalling this input by pushing

all its activities to sync with it. On the other hand,

and in the case of spontaneous activity as the in-
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Figure 2. Simulation result. a) The detected level of internal synchrony of the 3 neuron network in two

cases: when learning is allowed, and when not allowed. Tsync = 150 msec. b) The detected level of internal

synchrony of the 8 neuron network in two cases: when learning is allowed, and when not allowed. Tsync =

100 msec.
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Figure 3. a) The observed behavior of the network with 3 neuron with MSSM in case of allowing more

than the feedforward synapses to be tuned. The level of fed noise is higher than the standard one. b)

Desynchronization. The networks reach a stable level of synchrony lower than the starting level. Results

from both networks, 3 and 8 neuron, are illustrated.
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put is set to zero, the networks are able to find a

lower stable state of synchrony, since they desyn-

chronize their firing pattern. Both synchrony and

desynchrony cope with the conceptual postulations

discussed in the context of synchrony [41] and the

role of noise in neural information processing [10].

Hence, the proposed framework achieved success-

fully the general sense of sustaining a defined state

of synchronous activity within a group of neurons

over a considerable time course of 100 - 150 mil-

liseconds.

It is worth mentioning that the dynamics of fa-

cilitation and depression in this MSSM model are

conceptually similar to those presented in the fa-

mous synaptic model by Markram et al [25], since

the facilitation and depression dynamics in our

model replace the efficacy and utilization parame-

ters respectively (Please review [39, 25] for more

details). The main difference between the two mod-

els, however, are mainly seen in two perspectives:

a) MSSM realizes the stochastic nature of the re-

lease process of Nt, and b) It accounts explicitly

for the activity of two synaptic resources which are

Ca2+ and Nt. However, in Markram’s model, the

input synaptic current is deterministically evaluated

by tracing both the utilization and recovery of a sin-

gle synaptic resource [25].

It remains, however, that the expressive power

of the proposed dynamics in terms of the number

of achievable states is to be tackled. On simula-

tion basis, there are some obstacles standing against

defining more stable states for the whole network.

Basically, although there are some analytical meth-

ods, the exact definition of a stable state of syn-

chronous activity in the network is still question-

able [36]. The proposed means in this paper as a

cross correlation coefficient may lack the fine res-

olution that is probably needed to differentiate be-

tween different states or even sub-states of neural

activity. Secondly, advances in the way to define a

stable state of activity should be directly combined

with dramatic changes in the learning rules.

The stochastic based synaptic model MSSM

demonstrated high sensitivity to the change in the

noise level, or background activity level. This

deeply agrees with the experimental results and

the logical considerations reported in [10] that the

background activity controls the input output char-

acteristics. This envisages the stochastic-based

synaptic models as more plausible for modeling bi-

ological neural activities. Moreover, it reflects the

importance of considering both the concentration of

Nt and Ca+2 as key players in the synaptic dynam-

ics. This allows MSSM to meet a rich repertoire of

realistic dynamical behaviors and features.
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