PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation for stress-strain curves of the plastic damage model for concrete

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Barcelona model is one of the most widespread models used in the nonlinear finite element method for simulating the real behavior of concrete. The strong robustness of this model can be attributed to two main reasons, the first one being its ability to account for the elastic stiffness degradation induced by plastic straining and the second one the aptness of considering the stiffness recovery effects under cyclic loading. This model was examined in the paper by comparing the generated stress–strain diagrams with several analytical solutions from the literature. The comparing process in the compression and tension cases with the closed-form solutions of Desayi, Krätzig, Lubliner and Thorenfeldt proved that the Barcelona model provided identical outcomes with Lubliner’s formula, which was used as the hardening function in the finite element implementation of this model. What is more, this model provided the same curves in case of the others in the ascending branches, and for the descending branch, this study proved that the outcomes of the Barcelona model are completely different from the ones of Desayi in the compression case and slightly similar to Thorenfeldt’s curves in the tension case.
Rocznik
Strony
34--52
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • University of Bouira, Faculty of Science and Applied Science, Algeria
  • University of Djelfa, Development Laboratory in Mechanics and Materials, Algeria
  • University of Bouira, Faculty of Science and Applied Science, Algeria
Bibliografia
  • Ahmed, B., Voyiadjis, G. Z. & Park, T. (2020). Damaged plasticity model for concrete using scalar damage variables with a novel stress decomposition. International Journal of Solids and Structures, 191, 56-75.
  • Alfarah, B., López-Almansa, F. & Oller, S. (2017). New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures. Engineering Structures, 132, 70-86.
  • Bakhti, R., Benahmed, B., Laib, A. & Alfach, M. T. (2022). New approach for computing damage parameters evolution in plastic damage model for concrete. Case Studies in Construction Materials, 16, e00834.
  • Bhartiya, R., Sahoo, D. R. & Verma, A. (2021). Modified damaged plasticity and variable confinement modelling of rectangular CFT columns. Journal of Constructional Steel Research, 176, 106426.
  • Comité euro-international du béton & Fédération internationale du béton [CEB-FIP] (2010). Model Code 2010. London: Thomas Telford.
  • Desayi, P. & Krishnan, S. (1964). Equation for the stress-strain curve of concrete. Journal Proceedings, 61 (3), 345-350.
  • Dvorkin, E. N., Cuitiño, A. M. & Gioia, G. (1989). A concrete material model based on non‐associated plasticity and fracture. Engineering Computations, 6, 281294.
  • Han, D. J. & Chen, W. F. (1986). Strain-space plasticity formulation for hardening-softening materials with elastoplastic coupling. International Journal of Solids and Structures, 22 (8), 935-950.
  • Javanmardi, M. R. & Maheri, M. R. (2019). Extended finite element method and anisotropic damage plasticity for modelling crack propagation in concrete. Finite Elements in Analysis and Design, 165, 1-20.
  • Lee, J. & Fenves, G. L. (1998). Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124 (8), 892-900.
  • Liu, Z., Zhang, L., Zhao, L., Wu, Z. & Guo, B. (2022). A damage model of concrete including hysteretic effect under cyclic loading. Materials, 15 (14), 5062.
  • Lu, D., Meng, F., Zhou, X., Wang, G., & Du, X. (2022). Double scalar variables plastic-damage model for concrete. Journal of Engineering Mechanics, 148 (2), 1-52.
  • Lubliner, J., Oliver, J., Oller, S. & Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25 (3), 299-326.
  • Krätzig, W. B. & Pölling, R. (2004). An elasto-plastic damage model for reinforced concrete with minimum number of material parameters. Computers & Structures, 82 (15-16), 1201-1215.
  • Menetrey, P. & Willam, K. J. (1995). Triaxial failure criterion for concrete and its generalization. Structural Journal, 92 (3), 311-318.
  • Meng, H., Yang, W. & Yang, X. (2022). Real-time damage monitoring of double-tube concrete column under axial force. Arabian Journal for Science and Engineering, 47, 12711-12728.
  • Minh, H. L., Khatir, S., Wahab, M. A. & Cuong-Le, T. (2021). A concrete damage plasticity model for predicting the effects of compressive high-strength concrete under static and dynamic loads. Journal of Building Engineering, 44, 103239.
  • Oller, S., Oñate, E., Oliver, J. & Lubliner, J. (1990). Finite element nonlinear analysis of concrete structures using a “plastic-damage model”. Engineering Fracture Mechanics, 35 (1-3), 219-231.
  • Othman, H. & Marzouk, H. (2018). Applicability of damage plasticity constitutive model for ultra-high performance fibre-reinforced concrete under impact loads. International Journal of Impact Engineering, 114, 20-31.
  • Ottosen, N. S. (1977). A failure criterion for concrete. Journal of the Engineering Mechanics Division, 103 (4), 527-535.
  • Paliwal, B., Hammi, Y., Moser, R. D., & Horstemeyer, M. F. (2017). A three-invariant cap-plasticity damage model for cementitious materials. International Journal of Solids and Structures, 108, 186-202.
  • Poliotti, M. & Bairán, J. M. (2019). A new concrete plastic-damage model with an evolutive dilatancy parameter. Engineering Structures, 189, 541-549.
  • Ren, W., Sneed, L. H., Yang, Y. & He, R. (2015). Numerical simulation of prestressed precast concrete bridge deck panels using damage plasticity model. International Journal of Concrete Structures and Materials, 9 (1), 45-54.
  • Silva, M. A. L., Gamage, J. C. P. H. & Fawzia, S. (2019). Performance of slab-column connections of flat slabs strengthened with carbon fiber reinforced polymers. Case Studies in Construction Materials, 11, e00275.
  • SIMULIA (2010). Abaqus analysis user’s manual. Volume III: Materials version 6.10. Vélizy-Villacoublay: Dassault Systémes.
  • Thorenfeldt, E. (1987). Mechanical properties of high-strength concrete and applications in design. In I. Holand (Ed.), Utilization of high strength concrete. Proceedings: symposium in Stavanger, Norway, June 15-18, 1987 (pp. 149-159). Trondheim: Tapir.
  • Vermeer, P. A. & De Borst, R. (1984). Non-associated plasticity for soils, concrete and rock. HERON, 29 (3), 3-64.
  • Xiao, Y., Chen, Z., Zhou, J., Leng, Y. & Xia, R. (2017). Concrete plastic-damage factor for finite element analysis: Concept, simulation, and experiment. Advances in Mechanical Engineering, 9 (9), 1-10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b16a8af4-4d5d-46c3-8bc8-c22bfc4aa6fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.