Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We find a formula for the supremum distribution of spectrally positive or negative Lévy processes with a broken linear drift. This gives formulas for ruin probabilities if two insurance companies (or two branches of the same company) divide between them both claims and premia in some specified proportions or if the premium rate for a given insurance portfolio is changed at a certain time. As an example we consider a gamma Lévy process, an -stable Lévy process and Brownian motion. Moreover we obtain identities for the Laplace transform of the distribution of the supremum of Lévy processes with a randomly broken drift (random time of the premium rate change) and on random intervals (random time when the insurance portfolio is closed).
Czasopismo
Rocznik
Tom
Strony
360--386
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- Department of Logistics, Wrocław University of Economics and Business, 53-345 Wrocław, Poland
Bibliografia
- [1] F. Avram, Z. Palmowski and M. Pistorius, A two-dimensional ruin problem on the positive quadrant, Insurance Math. Econom. 42 (2008), 227-234.
- [2] F. Avram, Z. Palmowski and M. Pistorius, Exit problem of a two dimensional risk process from the quadrant: exact and asymptotic results, Ann. Appl. Probab. 18 (2008), 2421-2449.
- [3] J. Bertoin, Lévy Processes, Cambridge Univ. Press, 1996.
- [4] J. Bertoin, Exponential decay and ergodicity of completely asymmetric Lévy processes in a finite interval, Ann. Appl. Probab. 7 (1997), 156-169.
- [5] K. Burnecki, M. Teuerle and A. Wilkowska, De Vylder type approximation of the ruin probability for the insurer-reinsurer model, Math. Applicanda 47 (2019), 5-24.
- [6] I. Czarna, Parisian ruin probability with a lower ultimate bankrupt barrier, Scand. Actuar. J. 2016, 319-337.
- [7] I. Czarna and Z. Palmowski, Ruin probability with Parisian delay for a spectrally negative Lévy risk process, J. Appl. Probab. 48 (2011), 984-1002
- [8] A. Dassios and S.Wu, Parisian ruin with exponential claims, preprint, Department of Statistics, London School of Economics and Political Science, London, 2008.
- [9] K. Dębicki, E. Hashorva and L. Ji, Parisian ruin of self-similar Gaussian risk processes, J. Appl. Probab. 52 (2015), 688-702.
- [10] K. Dębicki, E. Hashorva and Z. Michna, Simultaneous ruin probability for two-dimensional Brownian risk model, J. Appl. Probab. 57 (2020), 597-612.
- [11] K. Dębicki and M. Mandjes, Queues and Lévy Fluctuation Theory, Springer, 2015.
- [12] S. Foss, D. Korshunov, Z. Palmowski and T. Rolski, Two-dimensional ruin probability for subexponential claim size, Probab. Math. Statist. 37 (2017), 319-335.
- [13] H. Furrer, Z. Michna and A. Weron, Stable Lévy motion approximation in collective risk theory, Insurance Math. Econom. 20 (1997), 97-114.
- [14] A. Janicki and A. Weron, Simulation and Chaotic Behavior of _-Stable Stochastic Processes, Marcel Dekker, 1994.
- [15] D. G. Kendall, Some problems in the theory of dams, J. Roy. Statist. Soc. Ser. B 19 (1957), 207-212.
- [16] P. Lieshout and M. Mandjes, Tandem Brownian queues, Math. Methods Oper. Res. 66 (2007), 275-298.
- [17] M. Mandjes, Packet models revisited: tandem and priority system, Queueing Systems 47 (2004), 363-377.
- [18] Z. Michna, Formula for the supremum distribution of a spectrally positive α-stable Lévy process, Statist. Probab. Lett. 81 (2011), 231-235.
- [19] Z. Michna, Explicit formula for the supremum distribution of a spectrally negative stable process, Electron. Comm. Probab. 18 (2013), no. 10, 6 pp.
- [20] Z. Michna, Z. Palmowski and M. Pistorius, The distribution of the supremum for spectrally asymmetric Lévy processes, Electron. Comm. Probab. 20 (2015), no. 24, 10 pp.
- [21] J. P. Nolan, Numerical calculation of stable densities and distribution functions, Stoch. Models 13 (1997), 759-774.
- [22] G. Samorodnitsky and M. Taqqu, Non-Gaussian Stable Processes: Stochastic Models with Infinite Variance, Chapman and Hall, 1994.
- [23] K. Sato, Lévy processes and Infinitely Divisible Distributions, Cambridge Univ. Press, 1999.
- [24] V. N. Suprun, Problem of destruction and resolvent of a terminating process with independent increments, Ukrain. Math. J. 28 (1976), 39-45.
- [25] L. Takács, On the distribution of the supremum for stochastic processes with interchangeable increments, Trans. Amer. Math. Soc. 119 (1965), 367-379.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b167bb8c-9b36-40fa-ad59-47f8a76da6a1