PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strain-Hardening Prediction of DP600 Steel Considering the Heterogeneous Deformation Between Ferrite and Martensite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dual-phase steels have received extensive attention in autobody frame manufacturing due to the resulting characteristics of an interesting combination of ductile ferrite and hard martensite. Moreover, the ductile ferrite and hard martensite lead to heterogeneous deformation in the boundary between the two phases. Then, geometrically necessary dislocations (GNDs) are created to accommodate a lattice mismatch due to the deformation incompatibility of the boundary in straining. In this study, a new empirical GND model is developed, in which the GND density is a function of local plastic deformation; the GND density is distributed in the phase boundary in accordance with an “S” model of material plastic strain. The boundary conditions are applied to define the parameters. The proposed model is verified with DP600 steel. The effects of the GNDs and the width between ferrite and martensite on the strain hardening of DP600 steel are evaluated.
Twórcy
autor
  • Anhui Science and Technology University, College of Mechanical Engineering, Fengyang 233100, Anhui, China
autor
  • Anhui Science and Technology University, College of Mechanical Engineering, Fengyang 233100, Anhui, China
  • Shanghai Jiao Tong University, Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai 200240, China
autor
  • Anhui Science and Technology University, College of Architecture, Bengbu 233000, Anhui, China
autor
  • Anhui Science and Technology University, College of Mechanical Engineering, Fengyang 233100, Anhui, China
Bibliografia
  • [1] C.C. Tasan, M. Diehl, D. Yan et al., An Overview of Dual-Phase Steels: Advances in Microstructure Oriented Processing and Micromechanically Guided Design, Annu. Rev. Mater. Res. 45 (1), 91-431 (2015).
  • [2] T. Sirinakorn, S. Wongwises, V. Uthaisangsuk, A Study of Local Deformation and Damage of Dual Phase Steel, Mater. Des. 64, 729-742 (2014).
  • [3] H. Balmori-Ramirez, J.G. Cabañas-Moreno, H.A. Calderon-Benavides, et al., Austenite-Ferrite Transformation in Hot Rolled Mn-Cr-Mo Dual Phase Steels, Mater. Sci. Forum 560, 79-84 (2007).
  • [4] P.R. Mould, An Overview of Continuous-Annealing Technology for Steel Sheet Products, JOM. 34 (5), 18-28 (1982).
  • [5] C. Ren, W.J. Dan, W.G. Zhang, Effects of ferrite grain characteristics on strain distribution of dual-phase steel, Mater. Res. Express 6, 016539 (2019).
  • [6] T.T. Huang, R.B. Gou, W.J. Dan, W.G. Zhang, Strain-Hardening Behaviors of Dual Phase Steels with Microstructure Features, Mater. Sci. Eng. A 672, 88-97 (2016).
  • [7] C.C. Tasan, J.P.M. Hoefnagels, E.C.A. Dekkers, M.G.D. Geers, Multi-axial deformation setup for microscopic testing of sheet metal to fracture, Exp. Mech. 52, 669-678 (2012).
  • [8] H. Ghadbeigi, C. Pinna, S. Celotto, J.R, Yates, Local plastic strain evolution in a high strength dual-phase steel, Materials Science and Engineering A 527, 5026-32 (2010).
  • [9] M. Delince, P.J. Jacques, T. Pardoen, Separation of size-dependent strengthening contributions in fine-grained Dual Phase steels by nanoindentation, Acta Materialia 54, 3395-3404 (2006).
  • [10] M. Zamani, H. Mirzadeh, H.M. Ghasemi, Dependency of Natural Aging on the Ferritfoe Grain Size in Dual-Phase Steel, Metallurgical and Materials Transactions A 50A, 4961-4964 (2019).
  • [11] N. Saeidi, F. Ashrafizadeh, B. Niroumand, Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior, Metallurgical and Materials Transactions A 599, 145-149 (2014).
  • [12] H. Seyedrezai, A.K. Pilkey, J.D. Boyd, Effects of martensite particle size and spatial distribution on work hardening behavior of fine-grained dual-phase steel, Canadian Metallurgical Quarterly 57, 28-37 (2018).
  • [13] S. Kumar, A. Kumar, R. Sah, et al., Mechanical and Electrochemical Behavior of Dual-Phase Steels Having Varying Ferrite-Martensite Volume Fractions, Journal of Materials Engineering and Performance 28, 3600-3613 (2019).
  • [14] Q.Q. Lai, L. Brassart, O. Bouaziz, et al., Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: experiments and micromechanical modeling, International Journal of Plasticity 80, 187-203 (2016).
  • [15] V.F. Rad, R. Khamedi, A.R. Moradi, The effect of martensite volume fraction on topography of dual phase steels, Materials Letters 239, 21-23 (2019).
  • [16] S.K. Paul, Effect of martensite volume fraction on stress triaxiality and deformation behavior of dual phase steel, Materials & Design 50, 782-789 (2013).
  • [17] A.K. Rana, S.K. Paul, P.P. Dey, et al., Effect of Martensite Volume Fraction on Strain Partitioning Behavior of Dual Phase Steel, Physical Mesomechanics 21, 333-340 (2018).
  • [18] H.R. Pakzaman, S.S.G. Banadkouki, Effect of martensite volume fraction on abnormal work hardening behavior of a low carbon low alloy ferrite-martensite dual-phase steel, International Journal of Materials Research 111, 983-994 (2020).
  • [19] Q.Q. Lai, O. Bouaziz, M. Goune, et al., Damage and fracture of dual-phase steels: Influence of martensite volume fraction, Materials Science and Engineering A 646, 322-331 (2015).
  • [20] S.K. Paul, N. Stanford, T. Hilditch, Effect of martensite volume fraction on low cycle fatigue behaviour of dual phase steels: Experimental and microstructural investigation, Materials Science and Engineering A 638, 296-304 (2015).
  • [21] M. Zaeimi, A. Basti, M. Alitavoli, Effect of Martensite Volume Fraction on Forming Limit Diagrams of Dual-Phase Steel, Journal of Materials Engineering and Performance 24, 1781-1789 (2015).
  • [22] J.F. Nye, Some geometrical relations in dislocated crystals, Acta Metall. 15, 153-162 (1953).
  • [23] M.F. Ashby, The deformation of plastically non-homogeneous materials, Philos. Mag. 21, 399-424 (1970).
  • [24] A. Needleman, J. Gil Sevillano, Preface to the viewpoint set on: geometrically necessary dislocations and size dependent plasticity, Scr. Mater. 48, 109-111 (2003).
  • [25] E. Van der Giessen, A. Needleman, GNDs in nonlocal plasticity theories: lessons from discrete dislocation simulations, Scr. Mater. 48, 127-132 (2003).
  • [26] W.D. Nix, H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, Mech. Phys. Solids 46, 411-425 (1998).
  • [27] M. Calcagnotto, D. Ponge, E. Demir, et al., Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Materials Science and Engineering A 527, 2738-2746 (2010).
  • [28] J. Kadkhodapour, S. Schmauder, D. Raabe, et al., Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels, Acta Materialia 59, 4387-4394 (2011).
  • [29] A. Ramazani, K. Mukherjee, U. Prahl, et al., Transformation-Induced, Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels: Effect of Grain Size, Metallurgical and Materials Transactions A 43, 3850-3869 (2012).
  • [30] A. Ramazani, K. Mukherjee, A. Schwedt, et al., Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels, International Journal of Plasticity 43, 128-152 (2013).
  • [31] A. Kundu, D.P. Field, Influence of plastic deformation heterogeneity on development of geometrically necessary dislocation density in dual phase steel, Materials Science and Engineering A 667, 435-443 (2016).
  • [32] C. Ren, W.J. Dan, Y.S. Xu et al., Strain-Hardening Model of Dual Phase Steel with Geometrically Necessary Dislocations, Journal of Engineering Materials and Technology Transactions of the ASME 140, 031009 (2018).
  • [33] H.J. Gao, Y.G. Huang, Geometrically Necessary Dislocation and Size-Dependent Plasticity, Scr. Mater. 48, 113-118 (2013).
  • [34] Yuki Toji, Hiroshi Matsuda, Michael Herbig, Pyuck-Pa Choi, Dierk Raabe, Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy, Acta Materialia 65, 215-228 (2014).
  • [35] Han Sang Lee, Byoungchul Hwang, Sunghak Lee Chang Gil Lee, Sung-Joon Kim, Effects of Martensite Morphology and Tempering on Dynamic Deformation Behavior of Dual-Phase Steels, Metallurgical and Materials Transactions A 35, 2371-2382 (2004).
  • [36] H. Liang, F.P.E. Dunne, GND accumulation in bi-crystal deformation: Crystal plasticity analysis and comparison with experiments, International Journal of Mechanical Sciences 51, 326-333 (2009).
  • [37] S.K. Paul, M. Mukherjee, Determination of Bulk Flow Properties of a Material from the Flow Properties of its Constituent Phases, Comput. Mater. Sci. 84, 1-12 (2014).
  • [38] W.J. Dan, Z.Q. Lin, S.H. Li, W.G. Zhang, Study on the Mixture Strain Hardening of Multi-Phase Steels, Mater. Sci. Eng. A 552, 1-8 (2012).
  • [39] H. Mecking, U.F. Kocks, Kinetics of flow and strain-hardening [J]. Acta Metallurgica 29 (11), 1865-1875 (1981).
  • [40] G.I. Taylor, The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character V145 (855), 362-387 (1934).
  • [41] W.J. Dan, T.T. Huang, W.G. Zhang, A Multi-Phase Model for high Strength Steels, Int. J. Appl. Mechanics 07, 1550080 (2015).
  • [42] Gou Ruibin, Dan Wenjiao, Zhang Weigang, et al., Research on flow behaviors of the constituent grains in ferrite-martensite dual phase steels based on nanoindentation measurements, Materials Research Express 4, 076510 (2017).
Uwagi
1. This work was jointly supported by the Anhui university provincial natural science research projects (No. 2022AH051630, No. KJ2021ZD0111 and No. KJ2021A0862), and Anhui province natural science foundation (No. 2108085ME167).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b165b4f3-333c-4eba-a702-5395613fc386
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.