PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A short review on feedstock characteristics in methane production from municipal solid waste

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increase in population and industrialization leads to an increase in the solid waste year by year. The limited availability, increasing cost and adverse effect of climate change on fossil fuel leads to encouraging the research in the field of finding alternatives for energy sources. The organic fraction of municipal solid waste (OFMSW) can be utilized as a bio-energy source, which reduces the environmental impact and the requirement of landfill areas to dispose of municipal solid waste. Anaerobic digestion is the widely used sustainable approach to treat OFMSW. In recent years, the generation of methane from municipal solid waste has received increasing attention in research. This paper reviews literature published in recent years considering various characteristics of input feedstock parameters like pH, total solids, volatile solids, and water content which affect the digestion quality of the OFMSW and increase the production of methane. A regression model is developed to identify the relationship between methane production and various feedstock parameters. When the chemical compositions of feedstock were used as independent variables, the percentage variation accounted for by the model is low (r2 = 0.63) and also the important observation from the analysis is that the pH of the feedstock influences majorly methane production.
Rocznik
Strony
75--85
Opis fizyczny
Bibliogr. 87 poz.
Twórcy
  • Research Scholar; Department of Chemical Engineering, Sri Sivasubramaniaya Nadar College of Engineering, Kalavakkam, Chennai, India - 603110
  • Associate Prof.; Faculty of Chemical Engineering, Sri Sivasubramaniaya Nadar College of Engineering, Kalavakkam, Chennai, India - 603110
  • Associate Prof.; Faculty of Civil Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, India - 603110
Bibliografia
  • [1] Zamri, M. F. M. A., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A.H., Mofijur, M., Rizwanul Fattah, I.M., & Mahlia, T.M.I. (2020). A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 137, 1-17.
  • [2] Logan, M., & Visvanathan, C. (2019). Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Management and Research, 37(1), 27-39.
  • [3] Pham, T. P. T., Kaushik, R., Parshetti, G. K., Mahmood, R., & Balasubramanian, R. (2015). Food waste-to-energy conversion technologies: Current status and future directions. Waste Management, 38(1), 399-408.
  • [4] Breitenmoser, L., Gross, T., Huesch, R., Rau, J., Dhar, H., Kumar, S., Hugi, C., & Wintgens, T. (2019). Anaerobic digestion of biowastes in India: Opportunities, challenges and research needs. Journal of Environmental Management, 236, 396-412.
  • [5] Ngwabie, N. M., Wirlen, Y. L., Yinda, G. S., & VanderZaag, A. C. (2019). Quantifying greenhouse gas emissions from municipal solid waste dumpsites in Cameroon. Waste Management, 87, 947-953.
  • [6] Ahluwalia, I. J., & Patel, U. (2018). Solid waste management in India: An assessment of resource recovery and environmental impact. Indian Council for Research on International Economic Relations, 356, 1-48.
  • [7] Sharma, A., Gupta, A. K., & Ganguly, R. (2018). Impact of open dumping of municipal solid waste on soil properties in mountainous region. Journal of Rock Mechanics and Geotechnical Engineering, 10(4), 725-739.
  • [8] Moya, D., Aldás, C., López, G., & Kaparaju, P. (2017). Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Procedia, 134, 286-295.
  • [9] Rawat, M., & Ramanathan, A. (2011). Assessment of Methane Flux from Municipal Solid Waste (MSW) Landfill Areas of Delhi, India. Journal of Environmental Protection, 2(4), 399-407.
  • [10] Mor, S., Ravindra, K., De Visscher, A., Dahiya, R. P., & Chandra, A. (2006). Municipal solid waste characterization and its assessment for potential methane generation: A case study. Science of the Total Environment, 371(1-3), 1-10.
  • [11] Kumar, S., Smith, S., Fowler, G., Velis, C., Kumar, S.J., Arya, S., Rena, Kumar, R., & Cheeseman, C. (2017). Challenges and opportunities associated with waste management in India. Royal Society Open Science, 4(3), 1-11.
  • [12] Singh, C. K., Kumar, A., & Roy, S. S. (2018). Quantitative analysis of the methane gas emissions from municipal solid waste in India. Scientific Reports, 8(1), 1-9.
  • [13] Themelis, N. J., & Ulloa, P. A. (2006). Methane generation in landfills. Renewable Energy, 32(7), 1243-1257.
  • [14] Pujara, Y., Pathak, P., Sharma, A., & Govani, J. (2019). Review on Indian Municipal Solid Waste Management practices for reduction of environmental impacts to achieve sustainable development goals. Journal of Environmental Management, 248, 1-14.
  • [15] Kalyani, K. A., & Pandey, K. K. (2014). Waste to energy status in India: A short review. Renewable and Sustainable Energy Reviews, 31, 113-120.
  • [16] Singh, R. P., Tyagi, V. V., Allen, T., Ibrahim, M. H., & Kothari, R. (2011). An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renewable and Sustainable Energy Reviews, 15(9), 4797-4808.
  • [17] Nixon, J. D., Dey, P. K., Ghosh, S. K., & Davies, P. A. (2013). Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process. Energy, 59, 215-223.
  • [18] Minde, G., Magdum, S., & Kalyanraman, V. (2013). Biogas as a Sustainable Alternative for Current Energy Need of India. Journal of Sustainable Energy and Environment, 4(3), 121-132.
  • [19] Unnikrishnan, S., & Singh, A. (2010). Energy recovery in solid waste management through CDM in India and other countries. Resources, Conservation and Recycling, 54(10), 630-640.
  • [20] Rao, P. V., Baral, S. S., Dey, R., & Mutnuri, S. (2010). Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renewable and Sustainable Energy Reviews, 14(7), 2086-2094.
  • [21] Ossa-Arias, M.D.M., & González-Martínez, S. (2021). Methane Production from the Organic Fraction of Municipal Solid Waste Under Psychrophilic, Mesophilic, and Thermophilic Temperatures at Different Organic Loading Rates. Waste and Biomass Valorization, 1-13.
  • [22] Bajpai, P. (2017). Anaerobic Technology in Pulp and Paper Industry.
  • [23] Möller, K., & Müller, T. (2012). Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 12(3), 242-257.
  • [24] Campuzano, R., & González-Martínez, S. (2020). Start-up of dry semi-continuous OFMSW fermentation for methane production. Biomass and Bioenergy, 136, 1-7.
  • [25] Wang, L., Shen, F., Yuan, H., Zou, D., Liu, Y., Zhu, B., & Li, X. (2014). Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: Lab-scale and pilot-scale studies. Waste Management, 34(12), 2627-2633.
  • [26] J. Guendouz, P. Buffière, J. Cacho, M. Carrère, and J. P. Delgenes, Dry anaerobic digestion in batch mode: Design and operation of a laboratory-scale, completely mixed reactor, Waste Management, 30(10), 1768-1771.
  • [27] Mata-Alvarez, J., Macé, S., & Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 3-16.
  • [28] Dong, L., Zhenhong, Y., & Yongming, S. (2010). Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW). Bioresource Technology, 101(8), 2722-2728.
  • [29] Basinas, P., Rusín, J., & Chamrádová, K. (2021). Assessment of high-solid mesophilic and thermophilic anaerobic digestion of mechanically-separated municipal solid waste. Environmental Research, 192, 1-14.
  • [30] Fdez-Güelfo, L. A., Álvarez-Gallego, C., Sales, D., & Romero García, L. I. (2012). Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling. Waste Management, 32(3), 382-388.
  • [31] Angelidaki, I., Chen, X., Cui, J., Kaparaju, P., & Ellegaard, L. (2006). Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: Start-up procedure for continuously stirred tank reactor. Water Research, 40(14), 2621-2628.
  • [32] Rajagopal, R., Bellavance, D., & Rahaman, M. S. (2017). Psychrophilic anaerobic digestion of semi-dry mixed municipal food waste: For North American context. Process Safety and Environmental Protection, 105, 101-108.
  • [33] Rocamora, I., Wagland, S. T., Villa, R., Simpson, E. W., Fernández, O., & Bajón-Fernández, Y. (2020). Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance. Bioresource Technology, 299, 1-11.
  • [34] Karthikeyan, O. P., & Visvanathan, C. (2013). Bioenergy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: A review. Reviews in Environmental Science and Biotechnology, 12(3), 257-284.
  • [35] Li, J., Jha, A. K., He, J., Ban, Q., Chang, S., & Wang, P. (2011). Assessment of the effects of dry anaerobic codigestion of cow dung with waste water sludge on biogas yield and biodegradability. International Journal of Physical Sciences, 6(15), 3679-3688.
  • [36] Debruyn, J., & Hilborn, D. (2007). Anaerobic Digestion Basics. Small, (07), 1-6.
  • [37] Laiq Ur Rehman, M., Iqbal, A., Chang, C. C., Li, W., & Ju, M. (2019). Anaerobic digestion. Water Environment Research, 91(10), 1253-1271.
  • [38] Tyagi, V. K , Fdez-Güelfo, L. A., Zhou, Y., Álvarez-Gallego, C. J., Garcia, L. I. R., & Ng, W. J. (2018). Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renewable and Sustainable Energy Reviews, 93, 380-399.
  • [39] Campuzano, R., & González-Martínez, S. (2016). Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management, 54, 3-12.
  • [40] Al Seadi, T., & Lukehurst, C. (2012). Quality management of digestate from biogas plants used as fertiliser. IEA Bioenergy, 1-40.
  • [41] Paritosh, K., Kushwaha, S. K., Yadav, M., Pareek, N., Chawade, A., & Vivekanand, V. (2017). Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. BioMed Research International, 1-19.
  • [42] Panigrahi, S., & Dubey, B. K. (2019). A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renewable Energy, 143, 779-797.
  • [43] Schirmer, W. N., Jucá, J. F. T., Schuler, A. R. P., Holanda, S., & Jesus, L. L. (2014). Methane production in anaerobic digestion of organic waste from recife (Brazil) landfill: Evaluation in refuse of diferent ages. Brazilian Journal of Chemical Engineering, 31(2), 373-384.
  • [44] Motte, J.-C., Trably, E., Escudié, R., Hamelin, J., Steyer, J. -P., Bernet, N., Delgenes, J. -P & Dumas, C. (2013). Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion. Biotechnology for Biofuels, 6, 1-9.
  • [45] Naik, N., Tkachenko, E., & Wung, R. (2013). The anaerobic digestion of organic municipal solid waste in California. Chemistry, 234, 1-5.
  • [46] Browne, J. D. & Murphy, J. D. (2013). Assessment of the resource associated with biomethane from food waste. Applied Energy, 104, 170-177.
  • [47] Li, Y., Park, S. Y., & Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 15(1), 821-826.
  • [48] Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540-555.
  • [49] Wang, S., Hawkins, G. L., Kiepper, B. H., & Das, K. C. (2018). Treatment of slaughterhouse blood waste using pilot scale two-stage anaerobic digesters for biogas production. Renewable Energy, 126, 552-562.
  • [50] Goel, R., Takutomi, T., & Yasui, H. (2003). Anaerobic digestion of excess activated sludge with ozone pre-treatment. Water Science and Technology, 47(12), 207-214.
  • [51] Mishra, P., Thakur, S., Mahapatra, D. M., Wahid, Z. A., Liu, H., & Singh, L. (2018). Impacts of nano-metal oxides on hydrogen production in anaerobic digestion of palm oil mill effluent - A novel approach. International Journal of Hydrogen Energy, 43(5), 2666-2676.
  • [52] Liu, Z., Si, B., Li, J., He, J., Zhang, C., Lu, Y., Zhang, Y., & Xing, X. (2018). Bioprocess engineering for biohythane production from low-grade waste biomass: technical challenges towards scale up. Current Opinion in Biotechnology, 50, 25-31.
  • [53] Liu, C. M., Wachemo, A.C., Tong, H., Shi, S.H., Zhang, L., Yuan, H.R., & Li, X.J. (2018). Biogas production and microbial community properties during anaerobic digestion of corn stover at different temperatures. Bioresource Technology, 261, 93-103.
  • [54] Khairuddin, N., Manaf, L. A., Halimoon, N., Ghani, W. A. W. A. K., & Hassan, M. A. (2015). High Solid Anaerobic Co-digestion of Household Organic Waste with Cow Manure. Procedia Environmental Sciences, 30, 174-179.
  • [55] Zahedi, S., Sales, D., García-Morales, J. L., & Solera, R. (2018). Obtaining green energy from dry-thermophilic anaerobic co-digestion of municipal solid waste and biodiesel waste. Biosystems Engineering, 170, 108-116.
  • [56] Fernández-Rodríguez, J., Pérez, M., & Romero, L. I. (2013). Comparison of mesophilic and thermophilic dry anaerobic digestion of OFMSW: Kinetic analysis. Chemical Engineering Journal, 232, 59-64.
  • [57] Li, C., Li, J., Pan, L., Zhu, X., Xie, S., Yu, G., Wang, Y., Pan, X., Zhu, G., & Angelidaki, I. (2020). Treatment of digestate residues for energy recovery and biochar production: From lab to pilot-scale verification. Journal of Cleaner Production, 265, 1-12.
  • [58] Zhu, B., Zhang, R., Gikas, P., Rapport, J. , Jenkins, B., & Li, X. (2010). Biogas production from municipal solid wastes using an integrated rotary drum and anaerobic-phased solids digester system. Bioresource Technology, 101(16), 6374-6380.
  • [59] Campuzano, R., & González-Martínez, S. (2015). Extraction of soluble substances from organic solid municipal waste to increase methane production. Bioresource Technology, 178, 247-253.
  • [60] Melts, I., Normak, A., Nurk, L., & Heinsoo, K. (2014). Chemical characteristics of biomass from nature conservation management for methane production. Bioresource Technology, 167, 226-231.
  • [61] Xu, F., Wang, Z. W., & Li, Y. (2014). Predicting the methane yield of lignocellulosic biomass in mesophilic solid-state anaerobic digestion based on feedstock characteristics and process parameters. Bioresource Technology, 173, 168-176.
  • [62] Banks, C. J., Chesshire, M., Heaven, S., & Arnold, R. (2011). Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresource Technology, 102(2), 612-620.
  • [63] Marañón, E., Negral, L., Suárez‑Peña, B., Fernández‑Nava, Y., Ormaechea, P., Díaz‑Caneja, P., & Castrillón, L. (2021). Evaluation of the Methane Potential and Kinetics of Supermarket Food Waste. Waste and Biomass Valorization, 12(4), 1829-1843.
  • [64] Zhang, Y., & Banks, C. J. (2013). Impact of different particle size distributions on anaerobic digestion of the organic fraction of municipal solid waste. Waste Management, 33(2), 297-307.
  • [65] Zhang, Y., Banks, C. J., & Heaven, S. (2012). Codigestion of source segregated domestic food waste to improve process stability. Bioresource Technology, 114, 168-178.
  • [66] De Vrieze, J., De Lathouwer, L., Verstraete, W., & Boon, N.(2013). High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste. Water Research, 47(11), 3732-3741.
  • [67] Dai, X., Duan, N., Dong, B., & Dai, L. (2013). High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance. Waste Management, 33(2), 308-316.
  • [68] Ganesh, R., Torrijos, M., Sousbie, P., Lugardon, A., Steyer, J. P., & Delgenes, J. P. (2014). Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance. Waste Management, 34(5), 875-885.
  • [69] Davidsson, Å., Gruvberger, C., Christensen, T. H., Hansen, T. L., & Jansen, J. la C. (2007). Methane yield in source-sorted organic fraction of municipal solid waste. Waste Management, 27(3), 406-414.
  • [70] Du, Y. J., Liu, S. Y., & Shen, S. L. (2009). Evaluation of the performance of contaminant mitigation of Chinese standard Municipal Solid Waste landfill liner systems. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, 1, 929-932.
  • [71] Hansen, T. L., Jansen, J. la C., Davidsson, Å., & Christensen, T. H. (2007). Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery. Waste Management, 27(3), 398-405.
  • [72] Forster-Carneiro, T., Pérez, M., & Romero, L. I. (2008). Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresource Technology, 99(15), 6994-7002.
  • [73] Hartmann, H., & Ahring, B. K. (2005). Anaerobic digestion of the organic fraction of municipal solid waste: Influence of co-digestion with manure. Water Research, 39(8), 1543-1552.
  • [74] Bolzonella, D., Innocenti, L., Pavan, P., Traverso, P., & Cecchi, F. (2003). Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste: Focusing on the start-up phase. Bioresource Technology, 86(2), 123-129.
  • [75] Nayono, E. S., Gallert, C., & Winter, J. (2009). Foodwaste as a co-substrate in a fed-batch anaerobic biowaste digester for constant biogas supply. Water Science and Technology, 59(6), 1169-1178.
  • [76] Rao, M. S., & Singh, S. P. (2004). Bioenergy conversion studies of organic fraction of MSW: Kinetic studies and gas yield-organic loading relationships for process optimisation. Bioresource Technology, 95(2), 173-185.
  • [77] Alibardi, L., & Cossu, R. (2015). Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Management, 36, 147-155.
  • [78] Cabbai, V., Ballico, M., Aneggi, E., & Goi, D. (2013). BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Management, 33(7), 1626-1632.
  • [79] Schievano, A., D’Imporzano, G., Malagutti, L., Fragali, E., Ruboni, G., & Adani, F. (2010). Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology, 101(14), 5728-5732.
  • [80] Bong, C. P. C., Lim, L. Y., Lee, C. T., Klemeš, J. J., Ho, C. S., & Ho, W. S. (2018). The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion - A review. Journal of Cleaner Production, 172, 1545-1558.
  • [81] Zhang, R., El-Mashad, H., Hartman, K., Wang, F., Liu, G., Choate, C & Gamble, P. (2007). Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98(4), 929-935.
  • [82] Fisgativa, H., Tremier, A., & Dabert, P. (2016). Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion. Waste Management, 50, 264-274.
  • [83] Sohoo, I., Ritzkowski, M., Heerenklage, J., & Kuchta, K. (2019). Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan. Renewable and Sustainable Energy Reviews, 135, 1-12.
  • [84] Zhai, N., Zhang, T., Yin, D., Yang, G, Wang, X., Ren, G., & Feng, Y. (2015). Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste Management, 38(1), 1-6.
  • [85] Schievano, A., D’Imporzano, G., Malagutti, L., Fragali, E., Ruboni, G., & Adani, F. (2010). Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology, 101(14), 5728-5732.
  • [86] Ventura, J. R. S., Lee, J., & Jahng, D. (2014). A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste. Journal of Environmental Sciences (China), 26(6), 1274-1283.
  • [87] Wang, J., Huang, Y., & Zhao, X. (2004). Performance and characteristics of an anaerobic baffled reactor. Bioresource Technology, 93(2), 205-208.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b16420f2-3cf8-496d-b8a4-2d8a0b7e4579
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.