PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania kalorymetryczne wpływu plastyfikatora i domieszki napowietrzającej na kinetykę hydratacji cementów wieloskładnikowych z dodatkiem pucolany w formie pyłu ceglanego

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Isothermal-calorimetry study of the effect of plasticizer and air-entraining agent on the hydration kinetics of blended cements containing brick powder as a pozzolanic addition
Języki publikacji
PL EN
Abstrakty
PL
Wydzielanie ciepła podczas hydratacji spoiw złożonych z cementu portlandzkiego i zmielonej cegły (materiał wytwarzany współcześnie – cegła dziurawka) badano w kalorymetrze izotermicznym. Uwzględniono w badaniach wpływ plastyfikatora, środka napowietrzającego oraz ich mieszaniny; hydratację badano w etapie początkowym, do 140 h od sporządzenia zaczynu. Wyniki wskazują, że zastąpienie do 20% cementu przez pył ceglany nie wpływa na szybkość hydratacji; przy większych udziałach następuje spowolnienie hydratacji C3S o około 2 h. Początek reakcji pucolanowej stwierdzono po 45 h; reakcja ta biegnie dalej i zaznacza się najbardziej przy zawartości 20% pyłu. Nie stwierdzono istotnego wpływu zastosowanych w pracy domieszek. Opóźnienie hydratacji C3S w obecności plastyfikatora, domieszki napowietrzającej i ich mieszaniny jest we wszystkich przypadkach mniejsze niż 2 h, a wielkość efektu na krzywej kalorymetrycznej jest tylko o około 7% mniejsza.
EN
The hydration heat development in blended binders composed of Portland cement and waste ceramic powder originating in the contemporary hollow brick production is analyzed by isothermal calorimetry, including the influence of plasticizer, air-entraining agent and their combination on hydration kinetics, in the early hydration period up to 140 h. Experimental results show that the brick powder does not affect the rate of hydration reactions up to 20% Portland cement replacement level, for higher dosage the C3S hydration process is slowed down by about 2 h only. The pozzolanic reaction is identified to begin at 45 h; it continues during the whole remaining time period and is most pronounced up to 20% brick powder dosage in the blends. The influence of applied chemical admixtures on the hydration heat development is found not very significant. The retardation effects of superplasticizer, air-entraining agent and their combination on the C3S hydration are lower than 2 h in all analyzed cases and the magnitude of the C3S maximum of heat evolution curve is only up to 7% lower.
Czasopismo
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 24 poz., il., tab.
Twórcy
autor
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
autor
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
autor
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
Bibliografia
  • 1. G. Baronio, L. Binda, Study of the pozzolanicity of some bricks and clays. Constr. Build. Mat., 11, 41-46 (1997).
  • 2. S. Wild, A. Gailius, H. Hansen, L. Pederson, J. Szwabowski, Pozzolanic properties of a variety of European clay bricks. Build. Res. Inf., 25, 170-175 (1997).
  • 3. S. Wild, Observations on the use of ground waste clay brick as a cement replacement material. Build. Res. Inf., 24, 35-40 (1996).
  • 4. L. A. Pereira-de-Oliveira, J. P. Castro-Gomes, P.M.S Santos, The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Constr. Build. Mat., 31, 197-203 (2012).
  • 5. J. Ambroise, M. Murat, J. Pera, Hydration reaction and hardening of calcined clays and related minerals. V – extension of the research and general conclusions. Cem. Concr. Res., 15, 261-268 (1985).
  • 6. C. He, B. Osbaeck, E. Makovicky, Pozzolanic reactions of six principal clay minerals activation, reactivity assessments and technological effects. Cem. Concr. Res., 25, 1691-1702 (1995).
  • 7. B. B. Sabir, S. Wild, J. Bai, Metakaolin and calcined clay as pozzolans for concrete: a review. Cem. Concr. Comp., 23, 441-454 (2001).
  • 8. E. Vejmelková, M. Pavlíková, M. Keppert, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý. High Performance Concrete with Czech Metakaolin: Experimental Analysis of Strength, Toughness and Durability Characteristics. Constr. Build. Mat., 24, 1404-1411 (2010).
  • 9. F. Pacheco-Torgal, S. Jalali, Reusing ceramic wastes in concrete. Constr. Build. Mat., 24, 832-838 (2010).
  • 10. A. E. Lavat, M. A. Trezza, M. Poggi, Characterization of ceramic roof tile wastes as pozzolanic admixture. Waste Management, 29, 1666-1674 (2009).
  • 11. R. M. Senthamarai, P. Devadas Manoharan, Concrete with ceramic waste aggregate. Cem. Concr. Comp., 27, 910-913 (2005).
  • 12. R. Silvestre, E. Medel, A. García, J. Navas, Utilizing recycled ceramic aggregates obtained from tile industry in the design of open graded wearing course on both laboratory and in situ basis. Materials and Design, 50, 471-478 (2013).
  • 13. C. Medina, M. I. Sánchez de Rojas, M. Frías, Properties of recycled ceramic aggregate concretes: Water resistance. Cem. Concr. Comp., 40, 21-29 (2013).
  • 14 F. Bektas, Alkali reactivity of crushed clay brick aggregate. Constr. Build. Mat., 52, 79-85 (2014).
  • 15. E. Vejmelková, M. Keppert, P. Rovnaníková, M. Ondráček, Z. Keršner, R. Černý, Properties of high performance concrete containing fine-ground ceramics as supplementary cementitious material. Cem. Concr. Comp., 34, 55-61 (2012).
  • 16. F. Pacheco-Torgal, S. Jalali, Compressive strength and durability properties of ceramic wastes based concrete. Materials and Structures, 44, 155-167 (2011).
  • 17. M. C. Bignozzi, S. Bonduà. Alternative blended cement with ceramic residues: Corrosion resistance investigation on reinforced mortar. Cem. Concr. Res., 41, 947-954 (2011).
  • 18. C. Medina, P.F.G. Banfill, M.I. Sánchez de Rojas, M. Frías, Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Constr. Build. Mat., 40, 822-831 (2013).
  • 19. T. Kulovaná, E. Vejmelková, M. Keppert, P. Rovnaníková, M. Ondráček, Z. Keršner, R. Černý, Air-entrained concrete technology as an effective tool for increasing the limits of brick powder percentage in blended Portland cement binders, Cement Wapno Beton, 82, 1, 11-24 (2015).
  • 20. V. Tydlitát, J. Zákoutský, P. Volfová, R. Černý, Hydration heat development in blended cements containing fine-ground ceramics. Thermochimica Acta, 543, 125-129 (2012).
  • 21. V. Tydlitát, P. Tesárek, R. Černý, Effects of the Type of Calorimeter and the Use of Plasticizers and Hydrophobizers on the Measured Hydration Heat Development of FGD Gypsum, Journal of Thermal Analysis and Calorimetry, 91, 791-796 (2008).
  • 22. W. Nocuń-Wczelik, T. Wasąg, M. Styczyńska, G. Miklaszewski, Effect of some concrete admixtures on the Portland cement hydration, Cement Wapno Beton, 76, 5, 223-231 (2009).
  • 23. P. Siler, J. Kratky, N. De Belie, Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration, Journal of Thermal Analysis and Calorimetry, 107, 313–320 (2012).
  • 24. C. Pfeifer, B. Moeser, J. Stark, Microstructural Development during Hydration in Ultra-High-Performance Concrete. Cement Wapno Beton, 77, 3, 123-131 (2010).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b155c953-b4e7-44c3-9efd-53ef9e308546
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.