PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and analytical investigation on strengthening of heat damaged concrete by textile reinforced concrete (TRC)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Composites fabricated of textile as reinforcement and a fine-grained concrete as matrix are referred to textile reinforced concrete (TRC) which provides the opportunity to build thin and shell constructions and to repair and strengthen concrete and masonry structures. This paper aimed to exploit the repair potential of TRC through confinement of heat-damaged concrete columns. For this purpose, a two-phase approach was conducted, in the first phase of which the effect of elevated temperature on mechanical properties of concrete was examined. The main objective of the second phase, however, was to assess the efficiency of glass textile reinforced concrete (GTRC) in the confinement of heat-damaged concrete. This phase commenced with selecting a candidate mortar among commonly used TRC mortars to confine heat-damaged specimens. Experimental results revealed that the adopted confinement system is an efficient solution to enhance the load bearing capacity of even seriously heat-damaged specimens. Eventually, experimental results were compared with available prediction models from the literature for both of the load-bearing capacity and also the compressive strength of confined concrete. Then an analytical confinement model was proposed based on best-fit analysis exclusive to heat-damaged concrete confined by GTRC.
Rocznik
Strony
1468--1483
Opis fizyczny
Bibliogr. 66 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Department of Civil Engineering, University of Tabriz, 29 Bahman Boulevard, 51666 Tabriz, Iran
autor
  • Department of Civil Engineering, University of Tabriz, 29 Bahman Boulevard, 51666 Tabriz, Iran
autor
  • Department of Civil Engineering, University of Tabriz, 29 Bahman Boulevard, 51666 Tabriz, Iran
  • Department of Civil Engineering, University of Tabriz, 29 Bahman Boulevard, 51666 Tabriz, Iran
  • Department of Civil Engineering, University of Tabriz, 29 Bahman Boulevard, 51666 Tabriz, Iran
Bibliografia
  • [1] J. Ingham, Forensic engineering of fire-damaged structures,Proc. Inst. Civ. Eng. Eng. (2009) 12–17.
  • [2] W. Inge, S. Nugroho, H. Njo, et al., Strengthening method ofconcrete structure, in: IOP Conf, Ser. Earth Environ. Sci. (2018),http://dx.doi.org/10.1088/1755-1315/126/1/012051.
  • [3] T. Trapko, M. Mudisl, The effectiveness of CFRP materialsstrengthening of eccentrically compressed reinforcedconcrete columns, Arch. Civ. Mech. Eng. 11 (2011) 249–262. ,http://dx.doi.org/10.1016/S1644-9665(12)60187-3.
  • [4] H. Tran, X. Balandraud, J.F. Destrebecq, I. Pascal, F.- Aubière,Improvement of the mechanical performances of concretecylinders confined actively or passively by means of SMAwires, Arch. Civ. Mech. Eng. (2014) 4–11. , http://dx.doi.org/10.1016/j.acme.2014.04.009.
  • [5] A.C.I.C. 440, A.C. Institute, Guide for the Design and Constructionof Externally Bonded FRP Systems for Strengthening ConcreteStructures, American Concrete Institute, 2008.
  • [6] CSA. S806-02, Design and Construction of BuildingComponents With Fibrereinforced Polymers, CanadianStandards Association, Mississauga (Canada), 2002.
  • [7] L.A. Bisby, J.F. Chen, S.Q. Li, T.J. Stratford, N. Cueva, K. Crossling,Strengthening fire-damaged concrete by confinement withfibre-reinforced polymer wraps, Eng. Struct. 33 (2011) 3381–3391. , http://dx.doi.org/10.1016/j.engstruct.2011.07.002.
  • [8] M. Yaqub, C.G. Bailey, P. Nedwell, Axial capacity of post-heated square columns wrapped with FRP composites, Cem.Concr. Compos. 33 (2011) 694–701. , http://dx.doi.org/10.1016/j.cemconcomp.2011.03.011.
  • [9] H.S. Al-Nimry, A.M. Ghanem, FRP confinement of heat-damaged circular RC columns, Int. J. Concr. Struct. Mater. 11(2017) 115–133. , http://dx.doi.org/10.1007/s40069-016-0181-4.
  • [10] R. Alzeebaree, A. Çevik, B. Nematollahi, J. Sanjayan,Mechanical properties and durability of unconfined andconfined geopolymer concrete with fiber reinforced polymersexposed to sulfuric acid, Constr. Build. Mater. 215 (2019) 1015–1032. , http://dx.doi.org/10.1016/j.conbuildmat.2019.04.165.
  • [11] A. Mohammedameen, M.E. Güls, R. Alzeebaree, A. Çevik, A.Nis, Mechanical and durability performance of FRP confinedand unconfined strain hardening cementitious compositesexposed to sulfate attack, Constr. Build. Mater. 207 (2019) 158–173. , http://dx.doi.org/10.1016/j.conbuildmat.2019.02.108.
  • [12] M.E. Gülsan, A. Mohammedameen, M. Sahmaran, A. Nis, R.Alzeebaree, A. Çevik, Effects of Sulphuric Acid on Mechanicaland Durability Properties of ECC Confined by FRP Fabrics, Adv.Concr. Constr (2018), http://dx.doi.org/10.12989/acc.2018.6.2.199.
  • [13] H.R. Hamilton, B. Benmokrane, C.W. Dolan, M.M. Sprinkel,Polymer materials to enhance performance of concrete incivil infrastructure, Polym. Rev. Phila. Pa (Phila Pa) (2009),http://dx.doi.org/10.1080/15583720802656153.
  • [14] S. Halliwell, FRPs — the environmental agenda, Adv. Struct.Eng. 13 (2010) 783–791. , http://dx.doi.org/10.1260/1369-4332.13.5.783.
  • [15] T. Triantafillou, Textile Fibre Composites in Civil Engineering,Elsevier Science, 2016.
  • [16] A. Peled, A. Bentur, B. Mobasher, Textile-reinforced Concrete,Taylor & Francis, 2016.
  • [17] Y. Du, M. Zhang, F. Zhou, D. Zhu, Experimental study onbasalt textile-reinforced concrete under uniaxial tensileloading, Constr. Build. Mater. 138 (2017) 88–100. , http://dx.doi.org/10.1016/j.conbuildmat.2017.01.083.
  • [18] J. Esmaeili, I. Sharifi, K. Andalibi, J. Kasaei, Effect of differentmatrix compositions and Micro steel fibers on tensilebehavior of textile-reinforced concrete, IOP conf, Ser. Mater.Sci. Eng. 246 (2017), http://dx.doi.org/10.1088/1757-899X/246/1/012031.
  • [19] Y. Yao, F.A. Silva, M. Butler, V. Mechtcherine, B. Mobasher,Tension stiffening in textile-reinforced concrete under highspeed tensile loads, Cem. Concr. Compos. 64 (2015) 49–61. ,http://dx.doi.org/10.1016/j.cemconcomp.2015.07.009.
  • [20] R. Contamine, A.S. Larbi, P. Hamelin, Contribution to directtensile testing of textile-reinforced concrete (TRC)composites, Mater. Sci. Eng. A. 528 (2011) 8589–8598. , http://dx.doi.org/10.1016/j.msea.2011.08.009.
  • [21] H.M. Elsanadedy, T.H. Almusallam, S.H. Alsayed, Y.A. Al-Salloum, Flexural strengthening of RC beams using textile-reinforced mortar - Experimental and numerical study,Compos. Struct. 97 (2013) 40–55. , http://dx.doi.org/10.1016/j.compstruct.2012.09.053.
  • [22] A. Si Larbi, R. Contamine, E. Ferrier, P. Hamelin, Shearstrengthening of RC beams with textile-reinforced concrete(TRC) plate, Constr. Build. Mater. 24 (2010) 1928–1936. , http://dx.doi.org/10.1016/j.conbuildmat.2010.04.008.
  • [23] S.M. Raoof, L.N. Koutas, D.A. Bournas, Textile-reinforced mortar(TRM) versus fibre-reinforced polymers (FRP) in flexuralstrengthening of RC beams, Constr. Build. Mater. 151 (2017)279–291. , http://dx.doi.org/10.1016/j.conbuildmat.2017.05.023.
  • [24] I.M.I. Qeshta, P. Shafigh, M.Z. Jumaat, Research progress onthe flexural behaviour of externally bonded RC beams, Arch.Civ. Mech. Eng. 16 (2016) 982–1003. , http://dx.doi.org/10.1016/j.acme.2016.07.002.
  • [25] T.C. Triantafillou, C.G. Papanicolaou, P. Zissimopoulos, T.Laourdekis, Concrete confinement with textile-reinforcedmortar jackets, ACI Struct. J. 103 (2006) 28.
  • [26] A. Peled, Confinement of damaged and nondamagedstructural concrete with FRP and TRC sleeves, J. Compos.Constr. 11 (2007) 514–522. , http://dx.doi.org/10.1061/(ASCE)1090-0268(2007)11:5(514).
  • [27] R. Ortlepp, A. Lorenz, M. Curbach, Column strengtheningwith TRC: influences of the column geometry onto theconfinement effect, Adv. Mater. Sci. Eng. Int. J. 2009 (2009)1–6. , http://dx.doi.org/10.1155/2009/493097.
  • [28] D. García, P. Alonso, J.-T. San-José, L. Garmendia, C. Perlot,Confinement of medium strength concrete cylinders withbasalt textile-reinforced mortar, in: 13th Int. Congr. Polym.Concr. [ICPIC 2010]., 2010, 0–7. , http://dx.doi.org/10.1016/j.conbuildmat.2010.12.063.
  • [29] M. Di Ludovico, A. Prota, G. Manfredi, Structural upgradeusing basalt fibers for concrete confinement, J. Compos.Constr. 14 (2010) 541–552. , http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000114.
  • [30] F.J. De Caso y Basalo, F. Matta, A. Nanni, Fiber reinforcedcement-based composite system for concrete confinement,Constr. Build. Mater. 32 (2012) 55–65. , http://dx.doi.org/10.1016/j.conbuildmat.2010.12.063.
  • [31] L. Ombres, S. Mazzuca, Confined concrete elements withcement-based composites: confinement effectiveness andprediction models, J. Compos. Constr. 21 (2016) 4016103,http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000755.
  • [32] R. Ortlepp, S. Ortlepp, Textile-reinforced concrete forstrengthening of RC columns: a contribution to resourceconservation through the preservation of structures, Constr.Build. Mater. 132 (2017) 150–160. , http://dx.doi.org/10.1016/j.conbuildmat.2016.11.133.
  • [33] ASTM D 3039/D 3039M, Standard Test Method for TensileProperties of Polymer Matrix Composite Materials 1,ASTMInternational, WestConshohocken, PA, 2002, http://dx.doi.org/10.1520/D3039_D3039M-17.
  • [34] B. En, 197-1, Cement-Part 1: composition, specifications andconformity criteria for common cements, Br. Stand. Inst.(2000).
  • [35] M. Butler, V. Mechtcherine, S. Hempel, Experimentalinvestigations on the durability of fibre–matrix interfaces intextile-reinforced concrete, Cem. Concr. Compos. 31 (2009)221–231. , http://dx.doi.org/10.1016/j.cemconcomp.2009.02.005.
  • [36] T. Brockmann, W. Brameshuber, Mechanical and fracturemechanical properties of fine grained concrete for textile-reinforced composites, Fakultät für Bauingenieurwesen (2006).
  • [37] M. Hinzen, Einfluss Von Kurzfasern auf die Frisch-undFestbetoneigenschaften sowie das Tragverhalten VonTextilbeton, Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen (2014).
  • [38] ASTM C109 / C109M-16a, Standard Test Method forCompressive Strength of Hydraulic Cement Mortars (Using2-in. or [50-mm] Cube Specimens), ASTM International, WestConshohocken, PA, 2016, http://dx.doi.org/10.1520/C0109_C0109M-16A.
  • [39] ASTM C230 / C230M-14, Standard Specification for Flow Tablefor Use in Tests of Hydraulic Cement, ASTM International,West Conshohocken, PA, 2014, http://dx.doi.org/10.1520/C0230_C0230M-14.
  • [40] C. Industry, Assessment, design and repair of fire-damagedconcrete structures, Concr. Soc. (2008).
  • [41] H. Al-Nimry, R. Haddad, S. Afram, M. Abdel-Halim,Effectiveness of advanced composites in repairing heat-damaged RC columns, Mater. Struct. 46 (2013) 1843–1860. ,http://dx.doi.org/10.1617/s11527-013-0022-8.
  • [42] CLG, Approved Document B (Fire Safety) – Volume 2 –Buildings Other Than Dwelling Houses, Department forCommunities and Local Government, UK, 2006.
  • [43] ASTM C39 / C39M-16, Standard Test Method for CompressiveStrength of Cylindrical Concrete Specimens, ASTMInternational, West Conshohocken, PA, 2016, http://dx.doi.org/10.1520/C0039_C0039M-18.
  • [44] ASTM C469 / C469M-14, Standard Test Method for StaticModulus of Elasticity and Poisson's Ratio of Concrete inCompression, ASTM International, West Conshohocken, PA,2014, http://dx.doi.org/10.1520/C0469_C0469M-14.
  • [45] Y.N. Chan, G.F. Peng, M. Anson, Residual strength and porestructure of high-strength concrete and normal strengthconcrete after exposure to high temperatures, Cem. Concr.Compos. 21 (1999) 23–27. , http://dx.doi.org/10.1016/S0958-9465(98)00034-1.
  • [46] Q. Ma, R. Guo, Z. Zhao, Z. Lin, K. He, Mechanical propertiesof concrete at high temperature–a review, Constr. Build.Mater. 93 (2015) 371–383. , http://dx.doi.org/10.1016/j.conbuildmat.2015.05.131.
  • [47] Y.-F. Fu, Y.-L. Wong, C.-S. Poon, C.-A. Tang, P. Lin,Experimental study of micro/macro crack development andstress–strain relations of cement-based composite materialsat elevated temperatures, Cem. Concr. Res. 34 (2004) 789–797., http://dx.doi.org/10.1016/j.cemconres.2003.08.029.
  • [48] Y.-F. Chang, Y.-H. Chen, M.-S. Sheu, G.C. Yao, Residual stress–strain relationship for concrete after exposure to hightemperatures, Cem. Concr. Res. 36 (2006) 1999–2005. , http://dx.doi.org/10.1016/j.compstruct.2013.10.037.
  • [49] L. Ombres, Concrete confinement with a cement based highstrength composite material, Compos. Struct. 109 (2014) 294–304. , http://dx.doi.org/10.1016/j.compstruct.2013.10.037.
  • [50] T. Trapko, Confined concrete elements with PBO-FRCMcomposites, Constr. Build. Mater. 73 (2014) 332–338. , http://dx.doi.org/10.1016/j.conbuildmat.2014.09.055.
  • [51] R. Ortlepp, M. Curbach, Verstärken Von Stahlbetonstützenmit textilbewehrtem Beton, Beton- Und Stahlbetonbau 104(2009) 681–689. , http://dx.doi.org/10.1002/best.200900034.
  • [52] A.C. Institute, ACI 549. 4R-13 Guide to Design andConstruction of Externally Bonded Fabric-ReinforcedCementitious Matrix (FRCM) Systems for Repair andStrengthening Concrete and Masonry Structures, AmericanConcrete Institute, 2014.
  • [53] F.J. De Caso Y Basalo, F. Matta, A. Nanni, Fiber reinforcedcement-based composite system for concrete confinement,Constr. Build. Mater. 32 (2012) 55–65. , http://dx.doi.org/10.1016/j.conbuildmat.2010.12.063.
  • [54] L. Ombres, S. Mazzuca, Confined concrete elements withcement-based composites: confinement effectiveness andprediction models, J. Compos. Constr. 21 (2016) 4016103,http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000755.
  • [55] CEN- European Committee for Standardization, EN 1992-1-2:Design of Concrete Structures - Part 1-2: General Rules -Structural Fire Design, Des. Concr. Struct. - Part 1-2 Gen.Rules-Structural Fire Des. 2 (2004) 1–99.
  • [56] V.K.R. Kodur, T.C. Wang, F.P. Cheng, Predicting the fireresistance behaviour of high strength concrete columns,Cem. Concr. Compos. 26 (2004) 141–153. , http://dx.doi.org/10.1016/S0958-9465(03)00089-1.
  • [57] L.Y. Li, J. Purkiss, Stress-strain constitutive equations ofconcrete material at elevated temperatures, Fire Saf. J. 40(2005) 669–686. , http://dx.doi.org/10.1016/j.firesaf.2005.06.003.
  • [58] M. Bastami, F. Aslani, O.M. ESMAEILNIA, High-temperaturemechanical properties of concrete, Int. J. Civ. Eng. 8 (2010) 337–351.
  • [59] A. Khennane, G. Baker, Uniaxial model for concretee undervariable temperature and stress, J. Eng. Mech. 119 (1994)1507–1525. , http://dx.doi.org/10.1061/(ASCE)0733-9399(1993)119:8(1507).
  • [60] B. Yu, Fire Response of Reinforced Concrete BeamsStrengthened With Near-surface Mounted FRPReinforcement, Michigan State University, 2013.
  • [61] L.W.G. Zhenhai, Experimental investigation of strength anddeformation of concrete at elevated temperature, J. Build.Struct. 1 (1993) 1.
  • [62] Z.P. Bažant, J.-C. Chern, Stress-induced thermal and shrinkagestrains in concrete, J. Eng. Mech. 113 (1987) 1493–1511.
  • [63] Z.-D. Lu, A Research on Fire Response of Reinforced ConcreteBeams, Tongji Univ., 1989.
  • [64] Y.X. Yao, Research on Fire Response of Reinforced ConcreteFrames and Determination of Temperature Reached During aFire, Tongji Univ., 1991.
  • [65] T.T. Lie, T.D. Lin, Fire performance of reinforced concretecolumns, in: Fire Saf. Sci. Eng., ASTM International, 1985.
  • [66] M.J. Terro, Numerical modeling of the behavior of concretestructures in fire, ACI Struct. J. 95 (1998), http://dx.doi.org/10.14359/538.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b155aad2-350a-4506-83d1-82aa46348685
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.