Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an analysis of the impact of inertial forces of the electrolyte flow in an interelectrode gap on the effects of ECM process of curvilinear rotary surfaces. Considering a laminar flow in the interelectrode gap, the equations of the flow of the mixture of electrolyte and hydrogen in the curvilinear orthogonal coordinate system have been defined. Two classes of equations of motion have been formulated, which differ in the estimates referred to the components of velocity and pressure, and which were analytically solved using the method of perturbation. Using the machined surface shape evolution equation, the energy equation, and the analytical solutions for velocity and pressure, the ECM-characteristic distributions have been determined: of mean velocity, pressure, mean temperature, current density, gas phase concentration, the gap height after the set machining time for the case when there is no influence of inertial forces, the effect of centrifugal forces and, at the same time, centrifugal and longitudinal inertial forces.
Wydawca
Czasopismo
Rocznik
Tom
Strony
645--666
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Department of Mechanics and Computer Methods, Bydgoszcz University of Science and Technology,Bydgoszcz, Poland
autor
- Department of Manufacturing Techniques, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
autor
- Department of Digital Technology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
Bibliografia
- [1] G. Chrysslouris, M. Wollowitz, and N.P. Sun. Electrochemical hole making. Annals CIRP, 33(1):99–104, 1984. doi: 10.1016/S0007-8506(07)61388-2.
- [2] M. Datta and L.T. Romankiw. Application of chemical and electrochemical micromachining in the electronics industry. Journal of Electrochemical Society, 136(6):285–292, 1989. doi: 10.1149/1.2097055.
- [3] A. Ruszaj. Electrochemical machining – state of the art and direction of development. Mechanik, 90(12):1102–1109, 2017. doi: 10.17814/mechanik.2017.12.188.
- [4] A. Ruszaj, J. Gawlik, and S. Skoczypiec. Electrochemical machining – special equipment and applications in aircraft industry. Management and Production Engineering Review, 7(2):34–41, 2016. doi: 10.1515/mper-2016-0015.
- [5] K.P. Rajurkar, M.M. Sundaram,and A.P. Malshe. Review of electrochemical and electro discharge machining. Procedia CIRP, 6:13–26, 2013. doi: 10.1016/j.procir.2013.03.002.
- [6] J. Bannard. Electrochemical machining. Journal of Applied Electrochemistry, 7:1–29, 1977. doi: 10.1007/BF00615526.
- [7] J.A. McGeough. Principles of Electrochemical Machining. Chapman and Hall, London, 1974.
- [8] J.A. McGeough and H. Rasmussen. Theoretical analysis of the electroforming process. Journal Mechanical Engineering Science, 23(3):113–120, 1981. doi: 10.1243/JMES_JOUR_1981_023_024_02.
- [9] H.S.J. Altena. Precision ECM by process characteristic modelling. Ph.D. Thesis, Glasgow Caledonian University. 2000.
- [10] A. Budzyński and S. Seroka. Studies of unidirectional longitudinal electrochemical honing. Conference Materials EM-82, Bydgoszcz, Poland, pages 152–161, 1982. (in Polish).
- [11] L. Dąbrowski. Basics of Computer Simulation of Electrochemical Forming. Scientific Works, Mechanics 154, Publisher of Warsaw University of Technology. 1992. (in Polish).
- [12] J. Kozak and M. Zybura-Skrabalak. Some problems of surface roughness in electrochemical machining Procedia CIRP, 42:101–106, 2016. doi: 10.1016/j.procir.2016.02.198.
- [13] K. Łubkowski, L. Dąbrowski, J. Kozak, and M. Rozenek. Electrochemical machine tools for surface smoothing and deburring. Conference Materials EM-90, Bydgoszcz, Poland, pages 78-86, 1990. (in Polish).
- [14] X. Wang, H. Li, and S. Niu. Simulation and experimental research into combined electrochemical milling and electrochemical grinding machining of Ti40 titanium alloy. International Journal Electrochemical Science, 15:11150–11167, 2020. doi: 10.20964/2020.11.09.
- [15] M. Singh and S. Singh. Electrochemical discharge machining: A review on preceding and perspective research. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233(5):1425–1449, 2019. doi: 10.1177/0954405418798865.
- [16] J.F. Wilson. Practice and Theory of Electrochemical Machining. Wiley, New York, 1971.
- [17] J. Kozak. Mathematical models for computer simulation of electrochemical machining processes. Journal of Materials Processing Technology, 76(1-3):170-175, 1998. doi: 10.1016/S0924-0136(97)00333-6.
- [18] J. Sawicki. ECM machining of curvilinear rotary surfaces by a shaping tool electrode performing composite motion. Advances in Manufacturing Science and Technology, 34(2):79–92, 2010.
- [19] A.D. Davydov, V.M. Volgin, and V.V. Lyubimov. Electrochemical machining of metals: fundamentals of electrochemical shaping. Russian Journal of Electrochemistry, 40(12):1230–1265, 2004. doi: 10.1007/s11175-005-0002-6.
- [20] J. Sawicki and T. Paczkowski. Effect of the hydrodynamic conditions of electrolyte flow on critical states in electrochemical machining. EPJ Web of Conferences, 92:02078, 2015. doi: 10.1051/epjconf/20159202078.
- [21] C.F. Noble. Studies in Electrochemical Machining. PhD Thesis. University of Manchester, UK, 1976.
- [22] H. Demitras, O. Yilmaz, and B. Kanber. Controlling short circuiting, oxide layer and cavitation problems in electrochemical machining of freeform surfaces. Journal of Materials Processing Technology, 262:585–596, 2018. doi: 10.1016/j.jmatprotec.2018.07.029.
- [23] T. Paczkowski and J. Sawicki. Electrochemical machining of curvilinear surfaces. Machining Science and Technology, 12(1):33–52, 2008. doi: 10.1080/10910340701881433.
- [24] T. Paczkowski and J. Zdrojewski. The mechanism of ECM technology design for curvilinear surfaces. Procedia CIRP, 42:356–361, 2016. doi: 10.1016/j.procir.2016.02.195.
- [25] J. Sawicki. ECM machining of curvilinear rotary surfaces. Journal of Polish CIMAC. 5(3):88–98, 2010.
- [26] J. Sawicki. Analysis and Modeling of Electrochemical Machining of Curvilinear Rotary Surfaces. University Publisher. UTP University of Science and Technology, Poznan, Poland, 2013.
- [27] E.I. Filatov. The numerical simulation of the unsteady ECM process. Journal of Materials Processing Technology, 109(3):327–332, 2001. doi: 10.1016/S0924-0136(00)00817-7.
- [28] C. Zhang, Z. Xu, Y. Hang, and J. Xing. Effect of solution conductivity on tool electrode wear in electrochemical discharge drilling of nickel-based alloy. The International Journal of Advanced Manufacturing Technology, 103:743–756, 2019. doi: 10.1007/s00170-019-03492-w.
- [29] M. Chai, Z. Li, X. Song, J. Ren, and Q. Cui. Optimization and simulation of electrochemical machining of cooling holes on high temperature nickel-based alloy. International Journal Electrochemical Science, 16:210912, 2021. doi: 10.20964/2021.09.35.
- [30] D. Mi and W. Natsu. Proposal of ECM method for holes with complex internal features by controlling conductive area ratio along tool electrode. Precision Engineering, 42:179–186, 2015. doi: 10.1016/j.precisioneng.2015.04.015.
- [31] D. Zhu, R. Zhang, and C. Liu. Flow field improvement by optimizing turning profile at electrolyte inlet in electrochemical machining. International Journal of Precision Engineering and Manufacturing, 18(1):15–22, 2017. doi: 10.1007/s12541-017-0002-y.
- [32] J. Kozak. Surface Shaping Contactless Electrochemical Machining. Scientific Works, Mechanics 41, Publisher of Warsaw University of Technology. 1976. (in Polish).
- [33] Łubkowski K. Critical States in Electrochemical Machining. Scientific Works, Mechanics 163, Publisher of Warsaw University of Technology, 1996. (in Polish).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b14e847e-423c-4e85-aaf3-225bb53509c1