Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents experimental and numerical validation of the combustion process of coal and flour dust dispersed in a spherical chamber of 20 cubic decimetres volume. The aim of the study is to validate the numerical simulation results in relation to the experimental data obtained on the test stand. To perform the numerical simulations, a Computational Fluid Dynamics code FLUENT was used. Geometry of the computational domain was built in compliance with EN 14460. Numerical simulations were divided into two main steps. The first one consists in a dust dispersion process, where influence of standardized geometry was verified. The second part of numerical simulations investigated dust explosion characteristics in compliance with EN 14034. After several model modifications, outcomes of the numerical analysis shows positive agreement with both, the explosion characteristics for different dust concentration levels and the maximum pressure increase obtained on the test stand.
Słowa kluczowe
Rocznik
Tom
Strony
289--293
Opis fizyczny
Bibliogr. 20, rys., tab., fot.
Twórcy
autor
- Faculty of Fire Safety Engineering, Main School of Fire Service, 52/54 Słowackiego St., 01-629 Warsaw, Poland
autor
- Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
autor
- Faculty of Fire Safety Engineering, Main School of Fire Service, 52/54 Słowackiego St., 01-629 Warsaw, Poland
autor
- Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
- [1] T. Abbasi and S.A. Abbasi, “Dust explosions-Cases, causes, consequences, and control”, J. Hazard. Mater. 140 (1), 7-44 (2007).
- [2] R.K. Eckhoff, “Understanding dust explosions. The role of powder science and technology”, J. Loss Prevent. Proc. 22 (1), 105-116 (2009).
- [3] A. Polanczyk, P. Wawrzyniak, and I. Zbicinski, “CFD analysis of dust explosion relief system in the counter-current industrial spray drying tower”, Drying Technol. 31 (8), 881-890 (2013).
- [4] P. Wawrzyniak, A. Polańczyk, I. Zbicinski, M. Jaskulski, M. Podyma, and J. Rabaeva, “Modeling of dust explosion in the industrial spray dryer”, Drying Technol. 30 (15), 1720-1729 (2012).
- [5] ASTM E1226, “Standard test method for explosibility of dust clouds”, ASTM Int. 1, CD-ROM (2010).
- [6] EN 14034, “Determination of explosion characteristics of dust clouds”.
- [7] NFPA 68, Guide for Venting of Deflagrations National Fire Protection Association, Quincy, MA, New York, 2007.
- [8] VDI 3673, “Pressure release of dust explosions, part 1”, BeuthVerlag GmbH 10772, CD-ROM (2002).
- [9] W. Barnat, Experimental and numerical study of influence of incidence angle of shock wave created by explosive charge on the steel plate, Bull. Pol. Ac.: Tech. 62 (1), 151-163 (2014).
- [10] W. Barnat, Environmental influences on propagation of explosive wave on the dynamic response of plate, Bull. Pol. Ac.: Tech. 62 (3), 423-429 (2014).
- [11] B. H. Hjertager, K. Fuhre, and M. Bjorkhaug, “Gas explosion experiments in 1: 33 and 1: 5 scale offshore separator and compressor modules using stoichiometric homogeneous fuel/air clouds”, J. Loss Prevent. Proc. 1 (4), 197-205 (1988).
- [12] T. Skjold, “Review of the DESC project”, J. Loss Prevent. Proc. 20 (4), 291-302 (2007).
- [13] U. Krause and T. Kasch, The influence of flow and turbulence on flame propagation through dust-air mixtures, J. Loss Prevent. Proc. 13 (3), 291-298 (2000).
- [14] PN-A-74022:2003, “Cereal products. Wheat flour”.
- [15] M. Polka, Z. Salamonowicz, M. Wolinski, and B. Kukfisz, “Experimental analysis of minimal ignition temperatures of a dust layer and clouds on a heated surface of selected flammable dusts”, Procedia Eng. 45, 414-423 (2012).
- [16] Z. Salamonowicz, M. Polka, M. Wolinski, and M. Sobolewski, “Experiments and modeling of ignition of a dust layer on a hot surface”, Przem. Chem. 93 (1), 99-102 (2014).
- [17] Code ANSYS FLUENT, www.ansys.com.
- [18] K. Jamroziak, M. Bocian, and M. Kulisiewicz, “Energy consumption in mechanical systems using a certain nonlinear degenerate model”, J. Theoret. Appl. Mech. 51 (4), 827-835 (2013).
- [19] M. Bocian, K. Jamroziak, and M. Kulisiewicz, “An identification of nonlinear dissipative properties of constructional materials at dynamical impact loads conditions”, Meccanica 49 (8), 1955-1965 (2014).
- [20] G. Sztarbała, “An estimation of conditions inside construction works during a fire with the use of computational fluid dynamics”, Bull. Pol. Ac.: Tech. 61 (1), 155-160 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b14d57ff-ceeb-4b3d-8f97-68945c32a201