PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic stability of a three-layer beam – generalisation of the sandwich structure theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work focuses on the dynamic stability problem of a simply supported three-layer beam subjected to a pulsating axial force. Two analytical models of this beam are developed: one model takes into account the non-linear hypothesis of cross-section deformation, and the other takes into account the standard "broken line" hypothesis. Displacements, strains and stresses for each model are formulated in detail. Based on the Hamilton principle, equations of motion are determined for each of these models. These systems of two differential equations for each model are approximately solved with the consideration of the axial pulsating force, and the fundamental natural frequencies, critical forces and the Mathieu equation are determined. Detailed studies are performed for an exemplary family of beams. The stable and unstable regions are calculated for the three pulsating load cases. The values of fundamental natural frequencies and critical forces of exemplary beams calculated from two models are compared.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Łukasiewicz Research Network - Poznan Institute of Technology, 6 Ewarysta Estkowskiego St. 61-755 Poznan, Poland
  • Institute of Mathematics, Poznan University of Technology, ul. Piotrowo 3a, 60-965 Poznan, Poland
Bibliografia
  • 1. Ray KR, Kar C. Parametric instability of a sandwich beam under various boundary conditions. Computers & Structures. 1995;55(5): 857-870.
  • 2. Yeh J-Y, Chen L-W, Wang C-C. Dynamic stability of a sandwich beam with a constrained layer and electrorheological fluid core. Composite Structures. 2004;64(1):47-54.
  • 3. Yang W-P, Chen L-W, Wang C-C. Vibration and dynamic stability of a traveling sandwich beam. Journal of Sound and Vibration. 2005;285(3):597-614.
  • 4. Lin C-Y, Chen L-W. Dynamic stability of spinning pre-twisted sand-wich beams with a constrained damping layer subjected to periodic axial loads. Composite Structures. 2005;70(3):275-286.
  • 5. Carrera E, Brischetto S. A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates. Applied Mechanics Reviews. 2009;62:01080-1-17
  • 6. Reddy JN. Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. International Journal of Engineering Science. 2010;48:1507-1518.
  • 7. Misiurek K, Śniady P. Vibrations of sandwich beam due to a moving force. Composite Structures. 2013;104:85-93.
  • 8. Chen D, Kitipornchai S, Yang J. Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core, Thin-Walled Structures. 2016;107:39-48.
  • 9. Grygorowicz M, Magnucka-Blandzi E. Mathematical modeling for dynamic stability of sandwich beam with variable mechanical properties of core. Applied Mathematics and Mechanics. 2016;37(10):1361-1374.
  • 10. Kolakowski Z, Teter A. Coupled static and dynamic buckling model-ling of thin-walled structures in elastic range: Review of selected problems. Acta Mechanica et Automatica. 2016;10(2):141-149.
  • 11. Sayyad AS, Ghugal YM. A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates. International Journal of Applied Mechanics. 2017;9(1):1750007.
  • 12. Sayyad AS, Ghugal YM. Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of litera-ture. Composite Structures. 2017;171:486-504.
  • 13. Awrejcewicz J, Krysko VA, Pavlov SP, Zhigalov MV, Krysko AV. Mathematical model of a three-layer micro- and nano-beams based on the hypotheses of the Grigolyuk–Chulkov and the modified couple stress theory. International Journal of Solids and Structures. 2017;117:39-50.
  • 14. Smyczynski M, Magnucka-Blandzi E. Stability and free vibrations of the three layer beam with two binding layers. Thin-Walled Struc-tures. 2017;113:144-150.
  • 15. Sayyad AS, Ghugal YM. Effect of thickness stretching on the static deformations, natural frequencies, and critical buckling loads of lami-nated composite and sandwich beams. Journal of the Brazilian Soci-ety of Mechanical Sciences and Engineering. 2018;40(6):No 296.
  • 16. Magnucka-Blandzi E, Magnucki K. Mathematical modelling of a sandwich beam with consideration of the shear effect in the faces – three-point bending. Eighth International Conferece of Thin-Walled Structures – ICTWS 2018, Lisbon, Portugal, 24-27 July, 2018.
  • 17. Al-shujairi M, Mollamahmutoǧlu Ç. Dynamic stability of sandwich functionally graded micro-beam based on the nonlocal strain gradient theory with thermal effect. Composite Structures. 2018;201: 1018-1030.
  • 18. Birman V, Kardomateas GA. Review of current trends in research and applications of sandwich structures. Composites Part B: Engi-neering . 2018;142:221-240.
  • 19. Li YH, Dong YH, Qin Y, Lv HW. Nonlinear forced vibration and stability of an axially moving viscoelastic sandwich beam. Interna-tional Journal of Mechanical Sciences. 2018;138-139:131-145.
  • 20. Sayyad AS, Ghugal YM. Modeling and analysis of functionally grad-ed sandwich beams: A review. Mechanics of Advanced Materials and Structures. 2019;26(21):1776-1795.
  • 21. Sayyad AS, Ghugal YM. A sinusoidal beam theory for functionally graded sandwich curved beams. Composite Structures. 2019;226:111246.
  • 22. Sayyad AS, Avhad PV. On static bending, elastic buckling and free vibration analysis of symmetric functionally graded sandwich beams. Journal of Solid Mechanics. 2019;11(1):166-180.
  • 23. Eloy FS, Gomes GF, Ancelotti Jr. AC, Cunha Jr. SS, Bombard AJF, Junqueira DM. A numerical-experimental dynamic analysis of com-posite sandwich beam with magnetorheological elastomer honey-comb core. Composite Structures. 2019;209:242-257.
  • 24. Chen S, Geng R, Li W. Vibration analysis of functionally graded beams using a higher-order shear deformable beam model with ra-tional shear stress distribution. Composite Structures. 2021;277:114586.
  • 25. Tewelde SA, Krawczuk M. Nonlinear vibration analysis of beam and plate with closed crack: A review. Acta Mechanica et Automatica. 2022;16(3):274-285.
  • 26. Magnucki K., Magnucka-Blandzi E. Dynamic stability of a three-layer beam – Generalization of the sandwich structures theory. Proceed-ings of the 8th International Conference on Coupled Instabilities in Metal Structures, Lodz University of Technology, Poland, July 12-14, 2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b149caf0-822a-49ce-85af-5ce7016026eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.