PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Celulaza immobilizowana na kopolimerach N-winyloformamidu: Wpływ immobilizacji na aktywność katalityczną enzymu

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Cellulase immobilized on copolymers based on N-vinylformamide: Influence of immobilization on the catalytic activity of the enzyme
Języki publikacji
PL EN
Abstrakty
PL
Badano wpływ immobilizacji celulazy z Aspergillus sp EC 3.2.1.4. na aktywność katalityczną w reakcji enzymatycznej hydrolizy celulozy. Celulazę immobilizowano na hydrofilowych polimerowych nośnikach z grupami formamidowymi i pierwszorzędowymi grupami aminowymi. Nośniki syntezowano w procesie wolnorodnikowej kopolimeryzacji strąceniowej N-winyloformamidu (NVF) z diwinylobenzenem (DVB). Reaktywne pierwszorzędowe grupy aminowe w kopolimerze generowano na drodze reakcji hydrolizy w środowisku alkalicznym. Celulazę immobilizowano kowalencyjnie za pośrednictwem aldehydu glutarowego (GA) na nośniku z grupami aminowymi lub adsorbowano na nośniku z grupami formamidowymi. Otrzymane heterogeniczne biokatalizatory testowano w reakcji hydrolizy celulozy mikrokrystalicznej. Stwierdzono, że aktywność celulazy immobilizowanej na obu badanych nośnikach była większa niż dla enzymu w stanie natywnym.
EN
Immobilization effect of cellulase from Aspergillus sp. EC 3.2.1.4. catalytic activity in reaction of enzymatic hydrolysis of cellulose has been studied. Cellulase immobilized on a hydrophilic polymer carriers with formamide groups and primary amino groups. The carriers were synthesized in a free radical copolymerization of N-vinylformamide (NVF) with divinylbenzene (DVB). The reactive primary amino groups in the copolymer were generated by decarboxylation formamide groups in an alkaline medium. Cellulase was covalently immobilized via glutaraldehyde (GA) on the support with amino groups and adsorbed on a support with formamide groups. The resulting heterogeneous biocatalysts tested in the hydrolysis reaction microcrystalline cellulose. It was found that immobilized cellulase activity on both carriers tested was greater than the enzyme in the native state.
Czasopismo
Rocznik
Strony
447--454
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Wydział Chemii, Uniwersytet Jagielloński, Kraków
  • Instytut Chemii i Fizyki, Uniwersytet Rolniczy, Kraków
autor
  • Wydział Chemii, Uniwersytet Jagielloński, Kraków
Bibliografia
  • 1. Bayramoglu G., Senkal B.F., Arica M.Y.: Preparation of clay-poly(glycidyl methacrylate) composite support for immobilization of cellulose. Applied Clay Science 2013, 85, 88-95.
  • 2. Li C., Yoshimoto M., Fukunaga K., Nakao K.: Preparation and characterization of cellulasecontaining liposomes for their immobilization suitable for enzymatic hydrolysis of cellulose. J. Chem. Eng. Jpn. 2004, 37, 680.
  • 3. Gupta R., Lee Y.Y.: Mechanism of cellulase reaction on pure cellulosic substrates. BiotechnolBioeng 2008, 102 (6), 1570–1581.
  • 4. Sukumaran R.K.: Bioethanol from lignocellulosic biomass: part II production of cellulases and hemicellulases. In: Pandey A (ed) Hand book of plant based biofuels. CRC Press, BocaRaton 2009, pp 141–157.
  • 5. Sun Y., Cheng J.J.: Hydrolysis of lignocellulosic material for ethanol production: areview. BioresourTechnol 2002, 83, 1–11.
  • 6. Taherzadeh M.J., Karimi K.: Enzyme based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2007, 2 (4), 707–738.
  • 7. Zhang Y.H.P., Lynd L.R.: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 2004, 88, 797–824.
  • 8. Mansfield S.D., Mooney C., Saddler J.N.: Substrate and enzyme characteristics that limit cellulose hydrolysis. BiotechnolProg 1999, 15, 804–816.
  • 9. Arantes V., Saddler J.N.: Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 2010, 3, 4.
  • 10. Ortega N., Busto M.D., Perez-Mateos M.: Kinetic of cellulose saccharification by trichoderma reeseri cellulases. International Biodeterioration and Biodegradation 2001, 47, 7-14.
  • 11. Carvero J.M., Skovgaard P.A., Felby C., Sorensen H.R., Jorgensen H.: Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzyme Microbial Technology 2010, 46, 177-184.
  • 12. Sheldon R.A.: Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 2007, 349 (8-9), 1289-1307.
  • 13. Li C., Yoshimoto M., Fukunaga K., Nakao K.: Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose. Bioresearch Technology 2007, 98, 1366.
  • 14. Fernandez-Lafuente R.: Enzyme immobilization. Molecules 2014, 19, 20671-20674.
  • 15. Vaillant F., Millan A., Millan P., Dornier M., Decloux M., Reyners M.: Coimmobilized pectinlyase and endocellulase on chitin and nylon supports. Process Biochem. 2000, 35, 989-996.
  • 16. Mao X.P., Guo G.J., Huang J.F., Du Z.Y., Huang Z.S., Ma L., et al.: A novel method to prepare chitosan powder and its application in cellulase immobilization. J. Chem. Technol. Biotechnol. 2006, 81, 189-195.
  • 17. Wu L.L., Yuan X.Y., Sheng J.: Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J. Membr. Sci. 2005, 250, 167-173.
  • 18. Hung T.Ch., Fu Ch.Ch., Su Ch.H., Chen J.Y., Wu W.T., Lin Y.S.: Immobilization of cellulase onto electrospun polyacrylonitrile (PAN) nanofibrous membranes and its application to the reducing sugar production from microalgae. Enzyme and Microbial Technology 2011, 49, 30-37.
  • 19. Zhang W., Qiu J., Feng H., Zang L., Sakai E.: Increase in stability of cellulose immobilized on functionalized magnetic nanospheres. J. Magnetism and Magnetic Materials 2015, 375, 117-123.
  • 20. Guzik U., Hupert-Kocurek K., Wojcieszyńska D.: Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules 2014, 19, 8995-9018.
  • 21. Rodrigues R.C., Ortiz C., Berenguera-Murcia A., Torres R., Fernandez-Lafuente R.: Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 2013, 42, 6290-6307.
  • 22. Garcia-Galan C., Berenguer-Murcia A., Fernandez-Lafuente R., Rodrigues R.C.: Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Syn. Cat. 2011, 353, 2885-2904.
  • 23. Krzyczmonik P., Soch E., Skrzypek S.: Immobilization of glucose oxides on modified electrodes with composite layers based on poly(3,4-ethylenedioxythiophene). Bioelectrochemistry 2015, 101, 8-13.
  • 24. Mumbarak N.M., Wong J.R., Tan K.W., Sahu J.N., Abdullah E.C., Jayakumar N.S., Ganesan P.: Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes. Journal of Molecular Catalysis B: Enzymatic 2014, 107, 124-131.
  • 25. Han W., Xin Y., Hasegawa U., Uyama H.: Enzyme immobilization on polymethacrylate-based monolith fabricated via thermally induced phase separation. Polymer Degradation and Stability 2014, 109, 362-366.
  • 26. Bayramoglu G., Karagoz B., Altintas B., Arica M.Y., Bicak N.: Poly(styrene-divinylobenzene) beads surface functionalized with di-block polymer grafting and multi-modal ligand attachment: performance of reversibly immobilized lipase in ester synthesis. Bioprocess Biosystem Engineering 2011, 34, 735-746.
  • 27. Ashly P.C., Joseph M.J., Mohanan P.V.: Activity of diastase α-amylase immobilized on polyanilines. Food Chemistry 2011, 127, 1808-1813.
  • 28. Karagoz B., Bayramoglu G., Altintas B., Bicak N., Yakup Arica M.: Amine functional monodisperse microbeads via precipitation polymerization of N-vinyl formamide: Immobilized laccase for benzidine based dyes degradation. Bioresource Technology 2011, 102, 6783–6790.
  • 29. Konieczna-Molenda A., Kochanowki A., Walaszek A., Bortel E., Tomasik P.: Immobilization of α-amylase on poly(vinylamine) and poly(vinylformamide) supports and its performance. Chemical Engineering Journal 2009, 146, 515-519.
  • 30. Tąta A., Sokołowska K., Świder J., Konieczna-Molenda A., Proniewicz E., Witek E.: Study of cellulolytic enzyme immobilization on copolymers of N-vinylformamide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 149, 494–504.
  • 31. Guisan J.M.: Immobilization of enzymes and cells. In: Methods in Biotechnology 2nd ed. Walker JM Eds.; Humana Press, Totowa, USA, 2006, Volume 22.
  • 32. Górecka E., Jastrzębska M.: Immobilization techniques and biopolymer carriers. Biotechnoligy and Food Science 2011, 75 (1), 65-86.
  • 33. Lopez-Gallego F., Betancor L., Hidalgo A., Alonso N., Fernandez-Lorente G., Guisan J.M., Fernandez-Lafuente R.: EnzymeMicrob. Technol. 2005, 37, 750-756.
  • 34. Lopez-Gallego F., Betancor L., Mateo C., Hidalgo A., Alonso-Morales N., Dellamora-Ortiz G., Guisˇıan J.M., Fernıandez-Lafuente R.: J. Biotechnol. 2005, 119, 70–75.
  • 35. Alonso N., Lopez-Gallego F., Betancor L., Hidalgo A., Mateo C., Guisan J.M., Fernandez-Lafuente R.: J. Mol. Catal.: B Enzyme 2005, 35, 57–61.
  • 36. Betancor L., Lopez-Gallego F., Hidalgo A., Alonso-Morales N., Dellamora-Ortiz G., Mateo C.R., Fernandez-Lafuente R., Guisan J.M.: Enzyme Microb. Technol. 2006, 39, 877–882.
  • 37. Miller R.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chem. 1959, 3, 426–428.
  • 38. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265-275.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1498072-af8b-4288-83d9-440d645ff3b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.