PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear dynamics and multifractal analysis of minimum–maximum temperature and solar radiation over Lagos State, Nigeria

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focuses on investigating the chaotic and multifractal behavior of atmospheric time series of solar radiation (solar), maximum temperature (Tmax), and minimum temperature (Tmin) over Lagos State for a period of 24 years. Chaotic quantifiers such as sample entropy, Lyapunov exponent, and correlation dimension were employed to unveil the chaotic nature of the time series. Values of Lyapunov exponents obtained for the three parameters were in the range 0.251–0.261, which confirms chaos in the time series. The scaling properties of the time series were revealed by applying the Multifractal Detrended Fluctuation Analysis (MFDFA). Based on the multifractal strength, we infer that the dynamics of solar radiation (0.932) is different from that of maximum temperature (0.155) and minimum temperature (0.198). The time series have a long-range correlation and broad probability distribution. Results obtained showed that the time series is chaotic and exhibited a multifractal behavior. The results also show that chaotic and multifractal analyses are useful in unveiling the complex dynamics of the atmosphere.
Czasopismo
Rocznik
Strony
2171--2178
Opis fizyczny
Bibliogr. 70 poz.
Twórcy
  • Adekunle Ajasin University, Akungba, Akoko, Nigeria
  • Federal University of Technology, Akure, Nigeria
  • Federal University of Technology, Akure, Nigeria
Bibliografia
  • 1. Abiodun BJ, Lawal KA, Salami AT, Abatan AA (2013) Potential influences of global warming on future climate and extreme events in Nigeria. Reg Environ Change 13(3):477–491
  • 2. Adedokun JA, Adeyefa ZD, Okogbue E, Holmgren B (1994) Measurement of solar and longwave radiation fluxes over Ile-Ife. In: Haubold HJ, Onuora LI (eds) American institute of physics (AIP) conference proceedings, pp. 179–190
  • 3. Agbazo M, Gabin K, Basile K, Eric A, Abel A, Norbert H (2019) Multi-fractal behaviors of long-term daily relative humidity and temperature were observed over Benin synoptic stations (West Africa). Earth Sci Res J 23:365–370. https://doi.org/10.15446/esrj.v23n4.51863
  • 4. Alcaraz R, Rieta JJ (2010) A novel application of sample entropy to the electrocardiogram of a trial fibrillation. Nonlinear Anal Real World Appl 11(2):1026–1035
  • 5. An N, Hemmati S, Cui Y (2017) Numerical analysis of soil volumetric water content and temperature variations in an embankment due to soil-atmosphere interaction. Comput Geotech 83:40–51
  • 6. Balogun RA, Samson A, Ajayi VO (2015) Investigation of heatwave characteristics over selected stations in Nigeria. J Geogr Environ Earth Sci Int 4:1–22
  • 7. Baranowski P, Krzyszczak J, Slawinski C, Hoffmann H, Kozyra J, Nier´obca A, Siwek K, Gluza A (2015) Multifractal analysis of meteorological time series to assess climate impacts. Climate Res 65:39–52
  • 8. Bartos I, Jánosi IM (2006) Nonlinear correlations of daily temperature records over land. Nonlinear Process Geophys 13(5):571–576
  • 9. Bishop SM, Yarham SI, Navapurkar VU, Menon DK, Ercole A (2012) Multifractal analysis of hemodynamic behavior: intraoperative instability and its pharmacological manipulation. J Am Soc Anesthesiol 117(4):810–821
  • 10. Calif R, Schmitt FG, Huang Y, Soubdhan T (2013) Intermittency study of high frequency global solar radiation sequences under a tropical climate. Sol Energy 98:349–365
  • 11. Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition. J Off Stat 6(1):3–73
  • 12. Dada B, Okogbu EC (2017) Estimating daily solar radiation from monthly values over selected Nigeria stations for solar energy utilization. J Fundam Renew Energy Appl. https://doi.org/10.4172/2090-4541.1000240
  • 13. Daut I, Yusoff MI, Ibrahim S, Irwanto M, Nsurface G (2012) Relationship between the solar radiation and surface temperature in Perlis. Adv Mater Res 512:143–147
  • 14. Echi IM, Tikyaa EV, Isikwue BC (2015) Dynamics of daily rainfall and temperature in Makurdi. Int J Sci Res 4(7):493–499
  • 15. Fan X, Lin M (2017) Multiscale multifractal detrended fluctuation analysis of earthquake magnitude series of Southern California. Phys A 479:225–235
  • 16. Fuwape IA, Ogunjo ST, Oluyamo SS, Rabiu AB (2017) Spatial variation of deterministic chaos in mean daily temperature and rainfall over Nigeria. Theoret Appl Climatol 130(1–2):119–132
  • 17. Fuwape I, Oluyamo S, Rabiu B, Ogunjo S (2020) Chaotic signature of climate extremes. Theoret Appl Climatol 139(1):565–576
  • 18. Gimeno L, García R, Pacheco JM, Hernández E, Ribera P (2001) Predictability of global surface temperature by means of nonlinear analysis. Earth Planet Sci Lett 184(3–4):561–5
  • 19. Guo Y, Huang J, Cheng H (2012) Multifractal features of metal futures market based on multifractal detrended cross-correlation analysis. Kybernetes 41:1509–1525
  • 20. Hossain KM, Ghosh DN, Ghosh K (2009) Investigating multifractality of solar irradiance data through wavelet based multifractal spectral analysis. Signal Proc Int J (SPIJ) 3(4):83
  • 21. Jelili MO, Akinyode BF, Ogunleti A (2021) Land pooling and urban renewal in Lagos state: a narrative inquiry into Isale Gangan project. Urban Forum 32(1):49–66
  • 22. Jiang L, Zhao X, Li N, Li F, Guo Z (2013) Different multifractal scaling of the 0 cm average ground surface temperature of four representative weather stations over China. Adv Meteorol 2013:1–8
  • 23. Kalamaras N, Tzanis CG, Deligiorgi D, Philippopoulos K, Koutsogiannis I (2019) Distribution of air temperature multifractal characteristics over Greece. Atmosphere 10:45. https://doi.org/10.3390/at-mos10020045
  • 24. Kalamaras N, Philippopoulos K, Deligiorgi D, Tzanis CG, Karvounis G (2017) Multifractal scaling properties of daily air temperature time series. Chaos Solitons Fractals 98:38–43
  • 25. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Phys A 316:87–114
  • 26. Karatasou S, Santamouris M (2018) Multifractal analysis of high-frequency temperature time series in the urban environment. Climate 6(2):50
  • 27. Kennel MB, Brown R, Abarbanel HD (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45(6):3403
  • 28. Khondekar MH, Ghosh DN, Ghosh K, Bhattacharjee AK (2013) Complexity in solar irradiance from the earth radiation budget satellite. IEEE Syst J 9(2):487–494
  • 29. Kříž R (2014) Finding chaos in finnish GDP. Int J Autom Comput 11:231–240
  • 30. Kyoung MS, Kim HS, Sivakumar B, Singh VP, Ahn KS (2011) Dynamic characteristics of monthly rainfall in the Korean Peninsula under climate change. Stochastic Envir Res Risk Assess 25(4):613–625. https://doi.org/10.1007/s00477-010-0425-9
  • 31. Lopes AM, Tenreiro Machado JA (2018) Complexity analysis of global temperature time series. Entropy 20(6):437
  • 32. Lu S, Wang J, Xue Y (2016) Study on multifractal fault diagnosis based on EMD fusion in hydraulic engineering. Appl Therm Eng 103:798–806
  • 33. Matia K, Ashkenazy Y, Stanley HE (2003) Multifractal properties of price fluctuations of stocks and commodities. Europhys Lett (EPL) 61(3):422
  • 34. Matuszko D (2012) Influence of the extent and genera of cloud cover on solar radiation intensity. Int J Climatol 32(15):2403–2414
  • 35. Maqsood I, Khan MR, Abraham A (2004) An ensemble of neural networks for weather forecasting. Neural Compute Appl 13:112–122
  • 36. Mellit A, Benghanem M, Arab AH, Guessoum A (2005) A simplified model for generating sequences of global solar radiation data for isolated sites using artificial neural network and a library of Markov transition matrices approach. Sol Energy 79(5):469–482
  • 37. Mellit A, Kalogirou SA, Shaari S, Salhi H, Arab AH (2008) Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: application for sizing a stand-alone PV system. Renew Energy 33(7):1570–1590
  • 38. Mihailović DT, Bessafi M, Marković S, Arsenić I, Malinović-Milićević S, Jeanty P, Delsaut M, Chabriat JP, Drešković N, Mihailović A (2018) Analysis of solar irradiation time series complexity and predictability by combining Kolmogorov measures and Hamming distance for La reunion (France). Entropy 20(8):570
  • 39. Millan H, Ghanbarian-Alavijeh B, Garcıa-Fornaris I (2010) Nonlinear dynamics of mean daily temperature and dewpoint time series at Babolsar, Iran, 1961–2005. Atmos Res 98(1):89–101
  • 40. Mimić G, Mihailović DT, Kapor D (2017) Complexity analysis of the air temperature and the precipitation time series in Serbia. Theor Appl Climatol 127(3):891–8
  • 41. Mitschke F, Dämmig M (1993) Chaos versus noise in experimental data. Int J Bifurcation Chaos 3(03):693–702
  • 42. Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9(3):747–766
  • 43. Montesinos L, Castaldo R, Pecchia L (2018) On the use of approximate entropy and sample entropy with centre of pressure time-series. J Neuroeng Rehabil 15(1):116
  • 44. Ogunjo ST (2021) Multifractal properties of meteorological drought at different time scales in a tropical location. Fluct Noise Lett 20(01):2150007
  • 45. Ogunjo ST, Fuwape IA (2020) Complexity of global sea surface temperature. Indian Acad Sci Conf Series 3:1. https://doi.org/10.29195/iascs.03.01.0019
  • 46. Ogunjo ST, Adediji AT, Dada JB (2015) Investigating chaotic features in solarradiation over a tropical station using recurrence quantification analysis. Theoret Appl Climatol 127(1–2):421–427
  • 47. Ogunjo ST, Adediji AT, Dada JB (2017) Investigating chaotic features in solar radiation over a tropical station using recurrence quantification analysis. Theoret Appl Climatol 127(1–2):421–427
  • 48. Ogunjo S, Fuwape I, Oluyamo S, Rabiu B (2019) Spatial dynamical complexity of precipitation and temperature extremes over Africa and South America. Asia-Pacific J Atmos Sci. https://doi.org/10.1007/s13143-019-00131-y
  • 49. Ogunjo ST, Akinsusi JO, Fuwape IA (2021a) Trends in extreme temperature indices over Lagos, Nigeria. IOP Conf Ser: Earth Environ Sci 655(1):012003
  • 50. Ogunjo ST, Obafaye AA, Rabiu AB (2021b) Solar energy potentials in different climatic zones of Nigeria. IOP Conf Ser: Mater Sci Eng 1032(1):012040
  • 51. Ogunjo ST, Rabiu AB, Fuwape IA, Obafaye AA (2021c) Evolution of dynamical complexities in geospace as captured by dst over four solar cycles 1964–2008. J Geophys Res Space Phys 126(4):e2020JA027873
  • 52. Ojo JS, Adelakun AO, Edward OV (2019) Comparative study on radio refractivity gradient in the troposphere using chaotic quantifiers. Heliyon 5(8):e02083
  • 53. Paniagua-Tineo A, Salcedo-Sanz S, Casanova-Mateo C, Ortiz-Garc´ıa EG, Cony MA, Hern´andez-Martın E (2011) Prediction of daily maximum temperature using a support vector regression algorithm. Renew Energy 36(11):3054–3060
  • 54. Philippopoulos K, Kalamaras N, Tzanis CG, Deligiorgi D, Koutsogiannis I (2019) Multifractal detrended fluctuation analysis of temperature reanalysis data over Greece. Atmosphere 10(6):336
  • 55. Poudyal KN, Bhattarai BK, Sapkota B, Kjeldstad B (2012) Estimation of global solar radiation using clearness index and cloud transmittance factor at trans-Himalayan region in Nepal. Energy Power Eng 4:415
  • 56. Rodríguez-Gómez BA, del Carmen Meizoso-López M, Mirás-Avalos JM, García-Tomillo A, Paz-González A (2013) Assessment of solar irradiation models in a Coruña by multifractal analysis. Vadose Zone J. https://doi.org/10.2136/vzj2012.0183
  • 57. Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Phys D 65(1–2):117–134
  • 58. Sambo AS (2009) Strategic developments in renewable energy in Nigeria. Int Assoc Energy Econ 16(3):15–19
  • 59. Sen Z (1998) Fuzzy algorithm for estimation of solar irradiation from sunshine duration. Sol Energy 63(1):39–49
  • 60. Shimizu YU, Thurner S, Ehrenberger K (2002) Multifractal spectra as a measure of complexity in human posture. Fractals 10(01):103–116
  • 61. Shrestha AK, Thapa A, Gautam H (2019) Solar radiation, air temperature, relative humidity, and dew point study: Damak, Jhapa, Nepal. Int J Photoenergy 2019:1
  • 62. Sokunbi MO (2014) Sample entropy reveals high discriminative power between young and elderly adults in short fMRI data sets. Front Neuroinform 8:69
  • 63. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Contribution of working group I to the fourth assessment report of the intergovernamental panel on climate change. Cambridge University Press, Cambridge
  • 64. Vitanov NK, Yankulova ED (2006) Multifractal analysis of the long-range correlations in the cardiac dynamics of Drosophila melanogaster. Chaos Solitons Fractals 28(3):768–775
  • 65. Wallot S, Mønster D (2018) Calculation of average mutual information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time series. Front Psychol 9:1679
  • 66. Wang F, Fan Q, Stanley HE (2016) Multiscale multifractal detrended-fluctuation analysis of two-dimensional surfaces. Phys Rev E. https://doi.org/10.1103/PhysRevE.93.042213
  • 67. Wong LT, Chow WK (2001) Solar radiation model. Appl Energy 69(3):191–224
  • 68. Yao P, Xue J, Zhou K, Wang X (2014) Sample entropy-based approach to evaluate the stability of double-wire pulsed MIG welding. Math Prob Eng 2014:1
  • 69. Yilmaz M, Gumus B, Kili¸c H (2017) Chaotic analysis of the global solar irradiance. Int Conf Renew Energy Res Appl
  • 70. Zeng Z, Yang H, Zhao R, Meng J (2013) Nonlinear characteristics of observed solar radiation data. Sol Energy 87:204–218
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b142bd75-438c-4be4-a934-06d026eb3cd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.