PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seasonal variations of PM2.5 and PM10 concentrations and inhalation exposure from PM-bound metals (As, Cd, Ni) : first studies in Poznań (Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza zmienności stężeń PM2.5 i PM10 wraz z oceną narażenia inhalacyjnego na metale ciężkie w PM10 (As, Cd i NI) : pierwsze badania w Poznaniu
Języki publikacji
EN
Abstrakty
EN
Results of measurements of suspended particulate matter concentrations – PM10 and PM2..5 (ambient particles with aerodynamic diameter not greater than 10 and 2.5 μm respectively) in Poznań, Poland in years 2010–2016 alongside the results of cancer risk assessment analysis in relation to inhalation exposure to selected heavy metals: As, Cd and Ni related to PM103 in 2010 at the measurement station on Szymanowskiego street to 39 μg/m3 in 2016 at measurement stations on Polanka and Dąbrowskiego streets. Mean concentrations in the heating season were twice higher than in non-heating season at stations on Szymanowskiego street, Polanka street and Dąbrowskiego street. In the case of heavy metals, the highest average seasonal concentrations were: 3.34 ng/m3 for As in the heating season of 2016 (Chwiałkowskiego street), 0.92 ng/m3 for Cd in the heating season of 2012 (Chwiałkowskiego street), 10.82 ng/m3 for Ni in the heating season of 2016 (Szymanowskiego street). We have shown that the presence of As in PM in Poznań is connected with fossil fuel emission from home fireplaces. Road traffic and industry were a potential source of Cd and Ni. The highest risk values for residents of Poznań were acquired for average concentrations in the heating seasons from 2012–2016 of As and they were: 24.27·10-6 for children, 11.87·10-6 for women and 9.94·10-6 for men. Received risk value on an acceptable level according to US EPA is 1·10-6.
PL
Celem pracy była analiza zmienności sezonowej stężeń PM2.5 i PM10 w Poznaniu wraz z oceną wpływu inhalacyjnego wybranych metali ciężkich związanych z PM10 (As, Cd i Ni) na mieszkańców. W pracy przedstawiono wyniki pomiarów stężenia pyłu zawieszonego PM10 i PM2.5 w Poznaniu w latach 2010-2016 oraz wyniki analizy oceny ryzyka zachorowania na raka w odniesieniu do ekspozycji inhalacyjnej na wybrane wartości PM: As, Cd, Ni. Dane wykorzystane w zestawieniu pochodzą z pomiarów WIOŚ i badań własnych. Przedstawione zostały średnie roczne stężenia PM w rozpatrywanym okresie wraz z analizą jego sezonowej zmienności. W celu określenia ryzyka autorzy wykorzystali metodologię oceny ryzyka US EPA. Średnie roczne stężenia PM10 kształtowały się w przedziale od 21 g/m3 w 2010 r. (ul. Szymanowskiego) do 39 g/m3 w 2016 roku (ul. Polanka i Dąbrowskiego). W przypadku metali ciężkich najwyższą wartość stężenia As (3,34 ng/m3) określono w sezonie grzewczym 2016 r. (ul. Chwiałkowskiego), stężenia Cd (0,92 ng/m3) w sezonie grzewczym w 2012 r. (ul. Chwiałkowskiego) oraz stężenia Ni (10,82 ng/m3) w sezonie grzewczym 2016 roku (ul. Szymanowskiego) Przeprowadzone obliczenia wskazały na najwyższe wartości ryzyka dla danych zebranych w latach 2012-2016 w sezonie grzewczym i wyniosły odpowiednio dla dzieci: 24,27-10-6, kobiet: 11,87 10-6 i mężczyzn: 9,9410-6. Wartość ryzyka na poziomie akceptowalnym zgodnie z US EPA wynosi 1‧10-6.
Słowa kluczowe
Rocznik
Strony
86--95
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
  • Wroclaw University of Technology, Poland, Faculty of Environmental Engineering, Unit of Engineering and Atmospheric Protection
  • Wroclaw University of Technology, Poland, Faculty of Environmental Engineering, Unit of Engineering and Atmospheric Protection
autor
  • Wroclaw University of Technology, Poland, Faculty of Environmental Engineering, Unit of Engineering and Atmospheric Protection
  • The Main School of Fire Service, Poland, Faculty of Fire Safety Engineering
  • Institute of Environmental Engineering, Polish Academy of Sciences in Zabrze, Poland
Bibliografia
  • 1. Atkinson, R.W., Anderson, H.R. & Sunyer, J. (2001). Acute effects of particulate air pollution on respiratory admission: Results from APHEA 2 Project, American Journal of Respiratory and Critical Care Medicine, 164, 10, pp. 1860-1866.
  • 2. Badyda, A. & Majewski, G. (2006). Analysis of the variations of the traffic related air pollutant concentrations in the urban agglomeration against a background of the traffic volume changes and meteorological conditions, Scientific Review Engineering and Environmental Protection, 1, 33, pp. 146-157.
  • 3. Barregard, L., Svalander, C., Schütz, A., Westberg, G., Sällsten, G., Blohmé, I., Mölne, J., Attman, P.O. & Haglind, P. (1999). Cadmium, mercury, and lead in kidney cortex of the generals Swedish population: a study of biopsies from living kidney donors, Environmental Health Perspectives, 107, 11, pp. 867-871.
  • 4. Bates, M.N., Smith, A.H. & Hopenhaym-Rich, C. (1992). Arsenic ingestion and internal cancers: A. review, American Journal of Epidemiology,135, 5, pp. 462-476.
  • 5. Biesiada, M., Janeczek, A., Biesiada, M., Muszyńska-Graca, M., Dąbkowska, B., Malec, B. & Kalińska, A. (2006). Health risk assessment of Wiślinka inhabitants related to the impact of phosphogypsum heap, Institute of Occupational Medicine and Environmental Health, Sosnowiec 2006.
  • 6. Birmili, W., Allen, A.G., Bary, F. & Harrison, R.M. (2006). Trace metal concentrations and water solubility in size fractionated atmospheric particles and influence of road traffic, Environmental Science and Technology, 40, 4, pp. 1144-1153.
  • 7. Błaszczak, B., Rogula-Kozłowska, W., Mathews, B. & Juda-Rezler, K. (2016). Chemical Compositions of PM2. 5 at Two Non- -Urban Sites from the Polluted Region in Europe, Aerosol and Air Quality Research, 16, pp. 2333-2348
  • 8. Bonda, E., Włostkowski, T. & Krasowska, A. (2007). Metabolism and toxicity of cadium in humans and Animals, Cosmos. Problems of Biological Sciences, 1-2, pp. 87-97.
  • 9. Calvo, F., Santos, Jr D., Rodrigues, C.J. Krug, F.J., Marumo, J.T., Schor, N. & Bellini, M.H. (2009). Variation in the distribution of trace elements in renal cell carcinoma, Biological Trace Element Research, 130, 2, pp.107-113
  • 10. Cembrzyńka, J., Krakowiak, E. & Brewczyński, P.Z. (2012). Particulate pollution of PM10 and PM2.5 due the strong anthropopressure in Sosnowiec City, Environmental Medicine, 15, 4, pp. 31-38.
  • 11. Chief Inspectorate of Environmental Protection, www.powietrze.gios.gov.pl, (http://powietrze.gios.gov.pl/pjp/archives (01.03.2018)).
  • 12. Chlebowska-Styś, A., Kobus, D., Zathey, M. & Sówka, I. (2017). The impact of toad transport on air quality in selected Polish cities, E3S Web of Conferences, 22, 00165, pp. 1-8.
  • 13. Chlebowska-Styś, A., Sówka, I., Kobus, D. & Pachurka, Ł. (2017) Analysis of concentrations trends and origins of PM10 in selected European cities, E3S Web of Conferences, 17, 00013, pp. 1-8.
  • 14. Chlebowska-Styś, A., Sówka, I. & Pachurka, Ł. (2016). Analysis of air quality in selected polish cities, In: Man vs environment: interaction, Chmielewski, J., Żeber-Dzikowska, I. & Gworek, B. (Eds.), Institute of Environmental Protection - National Research Institute, Warszawa 2016.
  • 15. Colvile, R.N., Hutchinson, E.J., Mindel, J.S. & Warren, R.F. (2001). The transport sector as a source of air pollution, Atmospheric Environment, 35, 9, pp. 1537-1565.
  • 16. Czarnecka, M. & Kalbarczyk, R. (2008). Weather conditions determining variability of suspended particulate matter concentration in Pomerania, Acta Agrophysica, 11, 2, pp. 357-368.
  • 17. Cusack, M., Alastuey, A., Pérez, N., Pey, J. & Querol, X. (2012). Trends of particulate matter (PM2.5) and chemical composition at a regional background site in the Western Mediterranean over the last nine years (2002-2010), Atmospheric, Chemistry and Physics, 12, pp. 8341-8357.
  • 18. Dębski, B., Olendrzyński, K., Cieślińska, J.et al. (2009). Emission inventory of SO, NO, NH, particulate matter, heavy metals, NMLZO, and POPs to air in Poland in 2007, Institute of Environmental Protection, Warszawa 2009.
  • 19. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air, Official Journal of the European Union, L 23/3.
  • 20. Dobrowolski, Z., Drewniak, T., Kwiatek, W. & Jakubik, P. (2002). Trace elements distribution in renal cell carcinoma depending on stage of disease, European Urology, 42, 5, pp. 475-480.
  • 21. European Environment Agency (2016). Air quality in Europe — 2016 report, EEA Report, 28, Copenhagen 2016.
  • 22. Friberg, L. (1984). Cadmium and the kidney, Environmental Health Perspectives, 54, pp. 1-11.
  • 23. Gruszecka-Kosowska, A. (2017). Assessment of the Kraków inhabitants’ health risk caused by the exposure to inhalation of outdoor air contaminants, Stochastic Environmental Research and Risk Assessment, 32, 2, pp.485-499.
  • 24. Jeong, C.H., J., Jon M. Wang, J. M., Greg J., Evans G.J. (2008). Source apportionment of particulate matter in Europe: A review of methods and results, Journal of Aerosol Science, 39, 10, pp. 827-849.
  • 25. Juda-Rezler, K., Reizer, M. & Oudinet, J.P. (2011). Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006, Atmospheric Environment, 45, 36, pp. 6557-6566.
  • 26. Karagulian, F., Belis, C.A., Dora, C.F.C., Prüss-Ustün, A.M., Bonjour, S., Adair-Rohani, H. & Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level, Atmospheric Environment, 120, pp. 475-483.
  • 27. Kozielska, B., Rogula-Kozłowska, W. & Pastuszka, J.S. (2013). Traffic emission effects on ambient air pollution by PM2. 5-related PAH in Upper Silesia, Poland, International Journal of Environment and Pollution, 53, 3-4, pp. 245-264.
  • 28. Krzyżanowski, M., Kuna-Dibbert, B. & Schneider, J. (2005). Health Effects of transport-related air pollution, World Health Organization Regional Office for Europe, Copenhagen 2005.
  • 29. Li, N., Hopke, P.K., Kumar, P., Cliff, S.S., Zhao, Y. & Navasca, C. (2013). Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe, Atmospheric Environment, 69, pp. 94-108.
  • 30. Lough, G.C., Schauer, J.J., Park, J.S., Shafer, M.M., Deminter, J.T. & Weinstein, J.P. (2005). Emissions of metals associated with motor vehicle roadways, Environmental Science and Technology, 39, 3, pp. 826-836.
  • 31. Majewski, G., Przewoźniczuk, W., Kleniewska, M. & Rozbicka, K. (2009). Analysis of selected air pollutants variability depending on precipitation in Ursynów area, Acta Agrophisica, 13, 2, pp. 419-434.
  • 32. Pachurka, Ł., Rogula-Kozłowska, W., Chlebowska-Styś, A., Nych, A. & Zwoździak, A. (2017). Exposure of urban agglomeration population to the selected components of PM1 emitted from low emission sources, E3S Web of Conferences, 17, 00071, pp. 1-8.
  • 33. Ramanathan, V., Crutzen, P.J., Kiehl, J.T. & Rosenfeld, D. (2011). Aerosols, climate, and the hydrologicalcycle, Science, 294, 5549, pp. 2119-2124.
  • 34. Rouil, L. & Meleux, F. (2016). Annual air quality assessment report2014, ECMWF Copernicus Report, Copernicus Atmosphere Monitoring Service, UK 2016.
  • 35. Regulation of the Minister of the Environment of August 24, 2012 on the levels of certain substances in the air, Dz.U. 2012 poz. 1031.
  • 36. Rogula-Kozłowska, W., Błaszczak, B. & Klejnowski, K. (2011). Concentrations of PM2.5, PM2. 5-10 and PM-related elements at two heights in an urban background area in Zabrze (Poland), Archives of Environmental Protection, 37, 2, pp. 31-47
  • 37. Rogula-Kozłowska, W., Klejnowski, K., Rogula-Kopiec, P. & Ośródka, L. (2014). Spatial and seasonal variability of the mass concentration and chemical composition of PM2. 5 in Poland, Air Quality, Atmosphere & Health, 7, 1, pp. 41-58
  • 38. Rogula-Kozłowska, W., Majewski, G., Błaszczak, B., Klejnowski, K. & Rogula-Kopiec, P. (2016). Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions, International Journal of Environmental Research and Public Health, 13, pp. 715.
  • 39. Sadowiec, K.J. & Gawroński, S.W. (2013). The usefulness of selected linden species (Tilia sp.) for phytoremediation of airborne particulate matter, Water-Environment-Rurals Areas, 13, 3, pp. 131-148.
  • 40. Sówka, I., Chlebowska-Styś, A. & Mathews, B. (2018). Preliminary analysis of variability in concentration of fine particulate matter PM10 , PM2.5 and PM10 in area of Poznań city, E3S Web of Conferences, 28, 01005, pp. 1-8.
  • 41. Sternbeck, J., Sjodin, A. & Andreasson, K. (2002). Metal emissions from road traffic and the influence of resuspension results from two tunnel studies, Atmospheric Environment, 36, 30, pp. 4735-4744.
  • 42. Trojanowska, M., Świetlik, R. (2012). Heavy metals cadmium, nickel and arsenic environmental inhalation hazard of residents of Polish cities, Environmental Medicine, 15, 2, pp. 33-41.
  • 43. Trojanowska, M. & Świetlik, R. (2013). Cancer risk assessment resulting from respiratory tracts exposure to benzo(a)pyrene in selected Polish cities, Environmental Medicine, 16, 2, pp. 14-22.
  • 44. US EPA (1986). Guidelines for Human Health Risk Assessment of Chemical Mixtures, Federal Register (51 FR 34014-34025), United States Environmental Protection Agency, Washington 1986.
  • 45. US EPA (1989). Risk Assessment Guidance for Superfund, Vol. I, Human Health Evaluation Manual (Part A), EPA/540/1-89/002. Office of Emergency and Remedial Response, United States Environmental Protection Agency, Washington1989
  • 46. US EPA (1991). Risk Assessment Guidance for Superfund, vol. I: Human Health Evaluation Manual Supplemental Guidance: Standard Default Exposure Factors (Interim Final), OSWER Directive 9285.6-03. Office of Emergency and Remedial Response, United States Environmental Protection Agency, Washington 1991.
  • 47. Voivodeship Inspectorate of Environmental Protection, www.powietrze.poznan.wios.gov.pl (http://powietrze.poznan.wios.gov.pl/dane-pomiarowe/automatyczne(01.03.2018))
  • 48. Voivodeship Inspectorate of Environmental Protection, www.wios.poznan.pl/komunikaty, (http://poznan.wios.gov.pl/category/komunikaty/(01.03.2018)),
  • 49. Widziewicz, K, Rogula-Kozłowska, W. & Majewski, G. (2017). Lung cancer risk associated with exposure to benzo(a)pyrene in polish agglomerations, cities, and other areas, International Journal of Environmental Research, 11, 5-6, pp. 685-693.
  • 50. Widziewicz, K. & Rogula-Kozłowska, W. (2017). Urban environment as a factor modulating metals deposition in the respiratory track and associated cancer risk, Atmospheric Pollution Research, 9, 3, pp. 399-410.
  • 51. Widziewicz, K., Rogula-Kozłowska, W. & Loska, K. (2016). Cancer risk from arsenic and chromium species bound to PM2,5 and PM1 - Polish case study, Atmosheric Pollution Research, 7, 5, pp. 884-894.
  • 52. Wilk, A., Kalisińska, E., Różański, J. & Łanoch, N. (2013). Cadmium, lead and mercury in human kidneys, Environmental Medicine, 16, 1, pp. 75-81.
  • 53. World Health Organization. (2013). Review of evidence on health aspects of air pollution (REVIHAAP). Technical report, WHO Regional Office for Europe, Copenhagen 2013.
  • 54. World Health Organization. (2016). Health risk assessment of air pollution - general principles, WHO Regional Office for Europe, Copenhagen 2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b140441f-a40a-4a8d-8439-2c306db22ad3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.