PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Design of a highly sensitive photonic crystal refractive index sensor incorporating ring-shaped GaAs cavity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two highly sensitive optical sensor topologies are proposed and simulated in this paper. The proposed structures are optimized to provide better performance characteristics such as sensitivity, detection limit, and quality factor. They are based on two-dimensional photonic crystals consisting of rectangular arrays of GaAs rods in SiO2 substrates. Such lattices have bandgaps for transverse magnetic modes. Two-dimensional finite difference time domain and plane wave expansion methods are used for the simulation and analysis of the refractive index sensors and particle swarm optimization method is used to optimize the structural parameters. The designed structures show a high sensitivity to refractive index variations. They are able to detect refractive indices from 1.33 to 1.5. An excellent figure of merit equal to 737 RIU−1 is observed for the proposed structure and a significant improvement is observed compared to the structures reported in the literature.
Twórcy
  • Photonics Research Lab., Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran
autor
  • Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran
autor
  • Photonics Research Lab., Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran
Bibliografia
  • [1] E. Kuramochi, H. Duprez, J. Kim, M. Takiguchi, K. Takeda, T. Fujii, K. Nozaki, A. Shinya, H. Sumikura, K. Taniyama, S. Matsuo, M. Notomi, Room temperature continuous-wave nanolaser diode utilized by ultrahigh-Q few-cell photonic crystal nanocavities, Opt. Express 26 (2018) 26598–26617.
  • [2] T. Watanabe, Y. Saijo, Y. Hasegawa, K. Watanabe, Y. Nishijima, T. Baba, Ion-sensitive photonic-crystal nanolaser sensors, Opt. Express 25 (2017) 24469–24479.
  • [3] M. Danaie, H. Kaatuzian, Design of a photonic crystal differential phase comparator for a Mach–Zehnder switch, J. Opt. 13 (2010), 015504.
  • [4] A. Salmanpour, S. Mohammadnejad, A. Bahrami, Photonic crystal logic gates: an overview, Opt. Quant. Electron. 47 (2015) 2249.
  • [5] M. Danaie, H. Kaatuzian, Design and simulation of an all-optical photonic crystal AND gate using nonlinear Kerr effect, Opt. Quant. Electron. 44 (2012) 27–34.
  • [6] V.S. Amaratunga, T.H. Hattori, M.H. Premaratne, H. Tan, C. Jagadish, Photonic crystal phase detector, J. Opt. Soc. Am. B 25 (2008) 1532–1536.
  • [7] B. Momeni, E. Shah Hosseini, M. Askari, M. Soltaniand, A. Adibi, Integrated photonic crystal spectrometers for sensing applications, Opt. Commun. 282 (2009) 3168–3171.
  • [8] M. Danaie, H. Kaatuzian, Improvement of power coupling in a nonlinear photonic crystal directional coupler switch, Photon. Nanostruct.: Fundam. Appl. 9 (2011) 70–81.
  • [9] N. Yamamoto, T. Ogawa, K. Komori, Photonic crystal directional coupler switch with small switching length and wide bandwidth, Opt. Express 14 (2006) 1223–1229.
  • [10] A. Ghaffari, M. Djavid, F. Monifi, M.S. Abrishamian, Photonic crystal power splitter and wavelength multi/demultiplexer based on directional coupling, J. Opt. A: Pure Appl. Opt. 10 (7) (2008), 075203.
  • [11] M. Danaie, R. Nasiri Far, A. Dideban, Design of a high-bandwidth Y-shaped photonic crystal power splitter for TE modes, Int. J. Opt. Photon. (IJOP) 12 (2018) 33–42.
  • [12] K. Zhang, L.B. Zhao, S.S. Guo, B.X. Shi, T.L. Lam, Y.C. Leung, Y. Chen, X.Z. Zhao, H.L. Chan, Y. Wang, A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells, Biosens. Bioelectron. 26 (2) (2010) 935–939.
  • [13] X. Yu, B. Munge, V. Patel, G. Jensen, A. Bhirde, J.D. Gong, S.N. Kim, J. Gillespie, J.S. Gutkind, F. Papadimitrakopoulos, J.F. Rusling, Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers, J. Am. Chem. Soc. 128 (34) (2006) 11199–11205.
  • [14] L. Tian, K. Qian, J. Qi, Q. Liu, C. Yao, W. Song, Y. Wang, Gold nanoparticles superlattices assembly for electrochemical biosensor detection of microRNA-21, Biosens. Bioelectron. 15 (2018) 564–570.
  • [15] C. Justino, A.C. Duarte, T.A. Rocha-Santos, Review of analytical figures of merit of sensors and biosensors in clinical applications, Trends Analyt. Chem. 29 (10) (2010) 1172–1183.
  • [16] S. Khani, M. Danaie, P. Rezaei, Size reduction of MIM surface plasmon based optical bandpass filters by the introduction of arrays of silver nano-rods, Physica E: Low-dimen. Sys. Nanostruct. 113 (2019) 25–34.
  • [17] Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, W. Liu, High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity, Appl. Phys. A 125 (1) (2019) 13.
  • [18] S. Khani, M. Danaie, P. Rezaei, Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators, Opt. Eng. 57 (10) (2018) 107102.
  • [19] M. Danaie, A. Geravand, Design of low-cross-talk metal–insulator–metal plasmonic waveguide intersections based on proposed cross-shaped resonators, J. Nanophotonics 12 (4) (2018) 046009.
  • [20] D. Liu, J. Wang, F. Zhang, Y. Pan, J. Lu, X. Ni, Tunable plasmonic band-pass filter with dual side-coupled circular ring resonators, Sensors 17 (3) (2017) 585
  • [21] S. Khani, M. Danaie, P. Rezaei, Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled U-shaped cavities, IET Opt. 13 (4) (2019) 161–171.
  • [22] M. Danaie, A. Shahzadi, Design of a high-resolution metal–Insulator–Metal plasmonic refractive index sensor based on a ring-shaped Si resonator, Plasmonics 14 (6) (2019) 1453–1465.
  • [23] S. Khani, M. Danaie, P. Rezaei, Design of a single-mode plasmonic bandpass filter using a hexagonal resonator coupled to graded-stub waveguides, Plasmonics 14 (1) (2019) 53–62.
  • [24] E. Danaee, A. Geravand, M. Danaie, Wide-band low cross-talk photonic crystal waveguide intersections using self-collimation phenomenon, Opt. Commun. 431 (2019) 216–228.
  • [25] A. Geravand, M. Danaie, S. Mohammadi, All-optical photonic crystal memory cells based on cavities with a dual-argument hysteresis feature, Opt. Commun. 430 (2019) 323–335.
  • [26] M. Danaie, B. Kiani, Design of a label-free photonic crystal refractive index sensor for biomedical applications, Photon. Nanostruct.: Fundam. Appl. 31 (2018) 89–98.
  • [27] V. Toccafondo, J. García-Rupérez, M.J. Banuls, ˜ A. Griol, J.G. Castelló, S. Peransi-Llopis, A. Maquieira, Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor, Opt. Lett. 35 (21) (2010) 3673.
  • [28] S. Chakravarty, W.C. Lai, Y. Zou, H.A. Drabkin, R.M. Gemmill, G.R. Simon, et al., Multiplexed specific label-free detection of NCI-H358 lung cancer cell line lysates with silicon based photonic crystal microcavity biosensors, Biosens. Bioelectron. 43 (2013) 50–55.
  • [29] S. Pal, E. Guillermain, R. Sriram, B.L. Miller, P.M. Fauchet, Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing, Biosens. Bioelectron. 26 (10) (2011) 4024–4031.
  • [30] A. Sinibaldi, A. Occhicone, P. Munzert, N. Danz, F. Sonntag, F. Michelotti, Label-free monitoring of human IgG/Anti-IgG recognition using bloch surface waves on 1D photonic crystals, Biosensors. 8 (2018) 71.
  • [31] M.G. Scullion, A. Di Falco, T.F. Krauss, Slotted photonic crystal cavities with integrated microfluidics for biosensing applications, Biosens. Bioelectron. 27 (1) (2011) 101–105.
  • [32] D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, et al., Photonic crystal nanostructures for optical biosensing applications, Biosens. Bioelectron. 24 (12) (2009) 3688–3692.
  • [33] L. Huang, H. Tian, J. Zhou, Q. Liu, P. Zhang, Y. Ji, Label-free optical sensor by designing a high-Q photonic crystal ring–slot structure, Opt. Commun. 15 (2015) 73–77.
  • [34] R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, S. Rana, R. Chandrawati, P. Munzert, T. Schubert, Bloch surface wave enhanced biosensor for the direct detection of Angiopoietin-2 tumor biomarker in human plasma, Biomed. Opt. Express 9 (2018) 529–542.
  • [35] H. Kaatuzian, Photonic Vol1 5th Printing, Amirkabir University press, 2017.
  • [36] H. Kaatuzian, Photonic Vol2 4th Printing, Amirkabir University press, 2018.
  • [37] J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R. Meade, Photonic Crystal Molding the Flow of Light, 2nd ed., Princeton university press, 2007.
  • [38] Q. Gong, X. Hu, Photonic Crystals Principles and Applications-Pan, Stanford Publishing,CRC Press, 2014.
  • [39] S. Olyaee, A. Mohebzadeh-Bahabadi, Photonic Crystals Devices, Fibers, Sanostructures, and Sensors, Shahid rajaee Teacher Training University, 2016.
  • [40] Y. Zhang, Y. Zhao, T. Zhou, Q. Wu, Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities, Lab Chip 18 (1) (2018) 57–74.
  • [41] S. Arfa, M. Bouchemat, T. Bouchemat, A. Benmerkhi, High sensitive optpfluidic sensor array based onring-shaped hoes photonic crystal H0-cavity, Optik 131 (2017) 49–57.
  • [42] D. Yang, H. Tian, Y. Ji, The properties of lattice-shifted microcavity in photonic crystal slab and its applications for electro-optical sensor, Sens. Actuators A Phys. 171 (2) (2011) 146–151.
  • [43] Y.N. Zhang, Y. Zhao, D. Wu, Q. Wang, Fiber loop ring-down refractive index sensor based on high- q photonic crystal cavity, IEEE Sens. J. 14 (6) (2014) 1878–1885.
  • [44] S. Robinson, K. Vijaya Shanthi, Analysis of protein concentration based on photonic crystal ring resonator, IJOP 10 (2) (2016) 123–130.
  • [45] R. Rajasekar, S. Robinson, Nano-pressure and temperature sensor based on hexagonal photonic crystal ring resonator, Plasmonics (2018), http://dx.doi.org/10.1007/s11468-018-0771-x.
  • [46] L. Hajshahvaladi, H. Kaatuzian, M. Danaie, Design of semiconductor photonic crystal double bandpass filter for CWDM sDesign and analysis of a plasmonic demultiplexer based on band-stop filters using double-nanodisk-shaped resonators, Opt. Eng. 51 (12) (2019) 391.
  • [47] M. Moradi, M. Danaie, A.A. Orouji, Design and analysis of an optical full-adder based on nonlinear photonic crystal ring resonators, Optik 172 (2018) 127–136.
  • [48] A. Di Falco, L. O’Faolain, T.F. Krauss, Chemical sensing in slotted photonic crystal heterostructure cavities, Appl. Phys. Lett. 94 (6) (2009), 063503.
  • [49] X. Fan, I.M. White, S.I. Shopova, H. Zhu, J.D. Suter, Y. Sun, Sensitive optical biosensors for unlabeled targets: a review, Anal. Chim. Acta 620 (1-2) (2008) 8–26.
  • [50] B. Bohounicky, S. Mousa, Biosensors: the new wave in cancer diagnosis, Nanotechnol. Sci. Appl. 1 (2010) 1–10, http://dx.doi.org/10.2147/NSA.S13465.
  • [51] S. Ghoshal, D. Mitra, S. Roy, D. Majumder, Biosensors and biochips for nanomedical applications: a review, Sensors Trans. J. 10 (2008).
  • [52] N.A. Mortensen, S. Xiao, J. Pedersen, Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications, Microfluid. Nanofluidics 4 (1–2) (2007) 117–127.
  • [53] L. Yonghao, Z. Weidong, S. Yuze, Optical refractive index sensing based on high bound state in the continuum in free-spacecoupled photonic crystal slabs, Sensors 17 (8) (2017) 1861.
  • [54] S. Olyaee, A. mohebzadeh-bahabady, Two-curve-shaped biosensor using photonic crystal nano-ring resonators, J. Nanostruct. 4 (3) (2014).
  • [55] M. Paulsen, S. Jahns, M. Gerken, Intensity-based readout of resonant-waveguide grating biosensors: systems and nanostructures, Photon. Nanostruct.: Fundam. Appl. 26 (2017) 69–79.
  • [56] S. Jahns, M. Bräu, B.-O. Meyer, T. Karrock, S.B. Gutekunst, L. Blohm, et al., Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection, Biomed. Opt. Express 6 (10) (2015) 3724.
  • [57] S. Jindal, S. Sobti, M. Kumar, S. Sharma, M.K. Pal, Nanocavity-coupled photonic crystal waveguide as highly sensitive platform for cancer detection, IEEE Sens. J. 16 (10) (2016) 3705–3710.
  • [58] N.F.F. Areed, M.F.O. Hameed, S.S.A. Obayya, Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring, Opt. Quant. Electron. 49 (1) (2017), 5, 1-12.
  • [59] S. Chowdhury, A. Maity, Numerical analysis of photonic crystal fiber based hemoglobin sensor, IJLEO 130 (2017) 825–829.
  • [60] O. Zhernovaya, O. Sydoruk, V. Tuchin, A. Douplik, The refractive index of human hemoglobin in the visible range, Phys. Med. Biol. 56 (13) (2011) 4013–4021.
  • [61] T.L. McMeekin, M. Wilensky, M.L. Groves, Refractive indices of proteins in relation to amino acid composition and specific volume, Biochem. Biophys. Res. Commun. 7 (2) (1962) 151–156.
  • [62] M.R. Rakhshani, M.A. Mansouri-Birjandi, Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application, Plasmonics 12 (4) (2016) 999–1006.
  • [63] L. Chen, Y. Liu, Z. Yu, D. Wu, R. Ma, Y. Zhang, H. Ye, Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity, Opt. Express 24 (9) (2016) 9975.
  • [64] E. Palik, Handbook of Optical Constants of Solids, Elsevier, 2012, ISBN: 9780080556307.
  • [65] B.E.A. Saleh, M.C. Teich, Fundamental of Photonics, 2nd ed, Wiley, New York, 2007.
  • [66] http://refractiveindex.info.
  • [67] I.C. Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection, Inf. Process. Lett. 85 (6) (2003) 317–325.
  • [68] Y. Shi, and R. C. Eberhart, (n.d.). Empirical study of particle swarm optimization. Proc. 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
  • [69] S. Khorasani, Introduction to Photonic Crystals Optic, Sharif university press, 2007.
  • [70] C.J. Choi, I.D. Block, B. Bole, D. Dralle, B.T. Cunningham, Label-free photonic crystal biosensor integrated microfluidic chip for determination of kinetic reaction rate constants, IEEE Sens. J. 9 (12) (2009) 1697–1704.
  • [71] C. Monat, P. Domachuk, B.J. Eggleton, Integrated optofluidics: a new river of light, Nat. Photonics 1 (2) (2007) 106–114.
  • [72] C.J. Choi, B.T. Cunningham, Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels, Lab Chip 6 (10) (2006) 1373.
  • [73] R. Zafar, M. Salim, Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor, IEEE Sens. J. 15 (11) (2015) 6313–6317.
  • [74] A. Di Falco, L. O’Faolain, T.F. Krauss, Chemical sensing in slotted photonic crystal heterostructure cavities, Appl. Phys. Lett. 94 (6) (2009), 063503.
  • [75] S. Najafgholinezhad, S. Olyaee, A photonic crystal biosensor with temperature dependency investigation of micro-cavity resonator, Opt. – Int. J. Light Electron. Opt. 125 (21) (2014) 6562–6565.
  • [76] R. Rizzo, M. Alvaro, N. Danz, L. Napione, E. Descrovi, S. Schmieder, A. Sinibaldi, R. Chandrawati, S. Rana, P. Munzert, T. Schubert, Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices, Sens. Actuators B Chem. 1 (2018) 2143–2150.
  • [77] Y. Zhang, Y. Zhao, H. Hu, Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature, Sens. Actuators B-Chem. 216 (2015) 563–571.
  • [78] F. Hosseinibalam, S. Hassanzadeh, A. Ebnali-Heidari, C. Karnutsch, Design of an optofluidic biosensor using the slow-light effect in photonic crystal structures, Appl. Opt. 51 (5) (2012) 568.
  • [79] D. Yang, H. Tian, Y. Ji, Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays, Opt. Express 19 (21) (2011) 20023.
  • [80] D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, et al., Photonic crystal nanostructures for optical biosensing applications, Biosens. Bioelectron. 24 (12) (2009) 3688–3692.
  • [81] M.R. Lee, P.M. Fauchet, Nanoscale microcavity sensor for single particle detection, Opt. Lett. 32 (22) (2007) 3284.
  • [82] S. Robinson, N. Dhanlaksmi, Photonic crystal based biosensor for the detection of glucose concentration in urine, Photonic Sens 7 (1) (2016) 11–19.
  • [83] Y. Guo, J.Y. Ye, C. Divin, B. Huang, T.P. Thomas, J.R. Baker, T.B. Norris, Real-time biomolecular binding detection using a sensitive photonic crystal biosensor, Anal. Chem. 82 (12) (2010) 5211–5218.
  • [84] A. Sinibaldi, C. Sampaoli, N. Danz, P. Munzert, L. Sibilio, F. Sonntag, A. Occhicone, E. Falvo, E. Tremante, P. Giacomini, F. Michelotti, Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves, Biosens. Bioelectron. 15 (2017) 125–130.
  • [85] F. Dortu, H. Egger, K. Kolari, T. Haatainen, P. Furjes, Z. Fekete, et al., Design and process development of a photonic crystal polymer biosensor for point-of-care diagnostics, Biomed. Spectrosc. Imaging (2011), 80870D.
  • [86] M. Nikoufard, A.F. Dastjani, A. Farhadi, Photonic crystal based MZI biosensor on InP materials, 2015 23rd Iranian Conference on Electrical Engineering (2015).
  • [87] S. Olyaee, A.M. Bahabady, Design and optimization of diamond-shaped biosensor using photonic crystal nano-ring resonator, Opt. – Int. J. Light Electron. Opt. 126 (20) (2015) 2560–2564.
  • [88] Y.-Y. Xie, Y.-X. Huang, W.-L. Zhao, W.-H. Xu, C. He, A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity, IEEE Photonics J. 7 (2) (2015) 1–12.
  • [89] F. Chen, D. Yao, Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide, Opt. Commun. 369 (2016) 72–78.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b13f574e-e2f3-4c93-9853-21932dab097d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.