PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Assessment of heat and mass transfer processes in vapor bubbles under conditions of metastable equilibrium of liquids

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a mathematical model that allows expanding the scope of research into the mechanism of heat transfer during explosive boiling, cavitation and boiling of multicomponent liquids, identifying the most influential factors and optimizing technological processes. The proposed model takes into account the processes of heat accumulation in the high-boiling part of liquid mixtures (for example, emulsions) and the use of this energy in the process of boiling their thermolabile part, as well as for superheating the resulting steam in steam bubbles. This effect can also be used to evaluate the effects of liquid boiling in thermodynamically unstable regions of liquid media.
Rocznik
Strony
483--506
Opis fizyczny
Bibliogr. 57 poz., rys.
Twórcy
  • Kielce University of Technology, Department of Sanitary Engineering, Aleja Tysiąclecia Państwa Polskiego 7, 25-314, Kielce, Poland
Bibliografia
  • [1] Zevnik J., Dular M.: Cavitation bubble interaction with a rigid spherical particle on a microscale. Ultrason. Sonochem. 69(2020), 105252. doi: 10.1016/j.ultsonch.2020.105252
  • [2] Albanese L., Ciriminna R., Meneguzzo F., Pagliaro M.: Energy efficient inactivation of Saccharomyces cerevisiae via controlled hydrodynamic cavitation. Energy Sci. Eng. 3(2015), 221–238. doi: 10.1002/ese3.62
  • [3] Podnar A., Dular M., Sirok B., Hocevar M.: Experimental analysis of cavitation phenomena on Kaplan turbine blades using flow visualization. J. Fluids Eng. 141(2019),7, 071101. doi: 10.1115/1.4041985
  • [4] Chernin L., Val D.V.: Probabilistic prediction of cavitation on rotor blades of tidal stream turbines. Renew. Energy 113(2017), 688–696. doi: 10.1016/j.renene.2017.06.037
  • [5] Pham-Thanh N., Van Tho H., Yum Y.J.: Evaluation of cavitation erosion of a propeller blade surface made of composite materials. J. Mech. Sci. Technol. 29(2015), 1629–1636. doi: 10.1007/s12206-015-0334-4
  • [6] Gasanov B.M., Bulanov N.V.: Effect of the droplet size of an emulsion dispersion phase in nucleate boiling and emulsion boiling crisis. Int. J. Heat Mass Transf.88(2015), 256–260. doi: 10.1016/j.ijheatmasstransfer.2015.04.018
  • [7] Roesle M.L., Lunde D.L., Kulacki F.A.: Boiling heat transfer to dilute emulsions from a vertical heated strip. J. Heat Transf. 137(2015), 4, 041503. doi:10.1115/1.4029456
  • [8] Rozentsvaig A.K., Strashinskii C.S.: The growth of vapor bubbles in the volume of superheated drops, dispersed in high-boiling liquid, Appl. Math. Sci. 8(2014), 151,7519–7528. doi: 10.12988/ams.2014.49183
  • [9] Ganesan B., Martini, S., Solorio J., Walsh M.K.: Determining the effects of high intensity ultrasound on the reduction of microbes in milk and orange juice using response surface methodology. Int. J. Food Sci. 2015(2015), 350719. doi:10.1155/2015/350719
  • [10] Chandrapala J., Oliver C., Kentish S., Ashokkumar M.: Ultrasonics in food processing – Food quality assurance and food safety. Trends Food Sci. Technol. 26(2012),88–98. doi: 10.1016/j.tifs.2012.01.010
  • [11] Sun X., Chen S., Liu J., Zhao S., Yoon J.Y.: Hydrodynamic cavitation: A promising technology for industrial-scale synthesis of nanomaterials. Front. Chem. 8(2020),259. doi: 10.3389/fchem.2020.00259
  • [12] Prajapat A.L., Gogate P.R.: Depolymerization of carboxymethyl cellulose using hydrodynamic cavitation combined with ultraviolet irradiation and potassium persulfate. Ultrason. Sonochem. 51(2019), 258–263. doi: 10.1016/j.ultsonch.2018.10.009
  • [13] Sun X., Wang Z., Xuan X., Ji L., Li X., Tao Y., Boczkaj G., Zhao S., Yoon J.Y., Chen S.: Disinfection characteristics of an advanced rotational hydrodynamic cavitation reactor in pilot scale. Ultrason. Sonochem. 73(2021), 105543. doi: 10.1016/j.ultsonch.2021.105543
  • [14] Albanese L., Baronti S., Liguori F., Meneguzzo F., Barbaro P., Vaccari F.P.: Hydrodynamic cavitation as an energy efficient process to increase biochar surface area and porosity: A case study. J. Clean. Prod. 210(2019), 159–169. doi: 10.1016/.jclepro.2018.10.341
  • [15] Pavlenko A.M.: Change of emulsion structure during heating and boiling. Int. J. Energy Clean Environ. 20(2019), 291–302. doi: 10.1615/InterJEnerCleanEnv.2019032616
  • [16] Pavlenko A.M., Basok B.I.: Regularities of boiling-up of emulsified liquids. Heat Transf. Res. 36(2005), 5, 419–424. doi: 10.1615/HeatTransRes.v36.i5.90
  • [17] Pavlenko A.M., Basok B.I.: Kinetics of water evaporation from emulsions. Heat Transf. Res. 36(2005), 5, 425–430. doi: 10.1615/HeatTransRes.v36.i5.100
  • [18] Butcher J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York 2008. doi: 10.1002/9780470753767
  • [19] Darges S.J., Devahdhanush V.S., Mudawar I., Nahra H.K., Balasubramaniam R., Hasan M.M., Mackey J.R.: Experimental results and interfacial lift-off model predictions of critical heat flux for flow boiling with subcooled inlet conditions – In preparation for experiments onboard the International Space Station. Int. J. Heat Mass Tran. 183(2022), C, 122241. doi: 10.1016/j.ijheatmasstransfer.2021.122241
  • [20] Yin S., Wang H., Xu Bo, Yang C., Gu H.: Critical flow leakage of a vapour-liquid mixture from sub-cooled water: Nucleation boiling study. Int. J. Heat Mass Tran.146(2020), 118807. doi: 10.1016/j.ijheatmasstransfer.2019.118807
  • [21] Xiao J., Zhang J.: Experimental investigation on flow boiling bubble motion under ultrasonic field in vertical minichannel by using bubble tracking algorithm. Ultrason. Sonochem. 95(2023), 106365. doi: 10.1016/j.ultsonch.2023.106365
  • [22] Xi X., Liu H., Cai Ch., Jia M., Yin H.: Analytical investigation on homogeneous nucleation of bicomponent fuels. Int. J. Heat Mass Tran. 132(2019), 498–507. doi:10.1016/j.ijheatmasstransfer.2018.12.028
  • [23] Xi X., Liu H., Cai Ch., Jia M. Zhang W.: Analytical investigation on the homogeneous nucleation in a mono-component and bi-component droplet. In: Proc. ASME 2019 6th Int. Conf. on Micro/Nanoscale Heat and Mass Transfer, Dalian, July 8–10,2019, V001T11A003. doi: 10.1115/MNHMT2019-3968
  • [24] Xi X., Cai Ch., Liu H., Wen R., Ma X., Song X.: Analytical and experimental study on binary droplet evaporation: Inhibitory effect of adding mineral oil adjuvant to water. Int. Commun. Heat Mass Transf. 142(2023), 106630. doi: 10.1016/j.icheatmasstransfer.2023.106630
  • [25] Zihe L., Ming J., Xi X., Hong L., Ping Y.: Simulation of the evaporation/boiling transition for the vaporization of a bi-component droplet under wide-temperature environments. Int. J. Heat Mass Tran. 193(2022), 122968. doi: 10.1016/j.ijheatmasstransfer.2022.122968
  • [26] Roesle M.L., Lunde D.L., Kulacki F.A.: Boiling heat transfer to dilute emulsions from a vertical heated strip. Int. J. Heat Mass Tran. 137(2015), 8. doi: 10.1016/j.ijheatmasstransfer.2011.12.020
  • [27] Dietzel D., Hitz T., Munz C.D., Kronenburg A.: Expansion rates of bubble clusters in superheated liquids. In: Proc. Germany ILASS–Europe 2017, 28th Conf. on Liquid Atomization and Spray Systems, Valencia, 6–8 Sept. 2017. doi:10.4995/ILASS2017.2017.4714
  • [28] Pavlenko A.: Dispersed phase breakup in boiling of emulsion. Heat Transf. Res. 49(2018), 633–641. doi: 10.1615/HeatTransRes.2018020630
  • [29] Pavlenko A.: Energy conversion in heat and mass transfer processes in boiling emulsions. Therm. Sci. Eng. Prog. 15(2019), 1–8. doi: 10.1016/j.tsep.2019.100439
  • [30] Aktershev S.P., Ovchinnikov V.V.: Modelling of boiling up of a metastable liquid with appearance of the evaporation fronts. Mod. Sci. Res. Ideas Results Technol.1(2013), 77–82.
  • [31] Pavlenko A.M., Koshlak H.: Application of thermal and cavitation effects for heat and mass transfer process intensification in multicomponent liquid media. Energies14(2021), 7996. doi: 10.3390/en14237996
  • [32] Pavlenko A.M., Szkarowski A., Janta-Lipińska S.: Research on burning of water black oil emulsions. Rocz. Ochr. Śr. 16(2014), 376–385.
  • [33] Pavlenko A.M.: Thermodynamic features of the intensive formation of hydrocarbon hydrates. Energies 13(2020), 3396. doi: 10.3390/en13133396
  • [34] Pavlenko A.M., Koshlak H.: Heat and Mass Transfer During Phase Transitions in Liquid Mixtures. Rocz. Ochr. Śr. 21(2019), 234–249.
  • [35] Koshlak H., Pavlenko A.: Method of formation of thermophysical properties of porous materials. Rocz. Ochr. Śr. 21(2019), 1253–1262.
  • [36] Mura E., Massoli P., Josset C.; Loubar K.; Bellettre J.: Study of the micro-explosion temperature of water in oil emulsion droplets during the Leidenfrost effect. Exp. Therm. Fluid Sci. 43(2012), 63–70. doi: 10.1016/j.expthermflusci.2012.03.027
  • [37] Shinjo J., Xia J., Megaritis A., Ganippa L.C., Cracknell R.F.: Modeling temperature distribution inside an emulsion fuel droplet under convective heating: A key to predicting microexplosion and puffing. At. Sprays. 26(2016), 551–583. doi: 10.1615/AtomizSpr.2015013302
  • [38] Yusof N.S.M., Babgi B., Alghamdi Y., Aksu M., Madhavan J., Ashokkumar M.: Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrason. Sonochem. 29(2016), 568–576. doi: 10.1016/j.ultsonch.2015.06.013
  • [39] Denner F., Schenke S.: Modeling acoustic emissions and shock formation of cavitation bubbles. Phys. Fluids 35(2023). doi: 10.1063/5.0131930
  • [40] Lee G.L., Law M.C.: Numerical modelling of single-bubble acoustic cavitation in water at saturation temperature. Chem. Eng. J.. 430(2022), 133051. doi:10.1016/j.cej.2021.133051
  • [41] Peng K., Qin F.G., Jiang R., Kang S.: Interpreting the influence of liquid temperature on cavitation collapse intensity through bubble dynamic analysis. Ultrason. Sonochem. 69(2020), 105253. doi: 10.1016/j.ultsonch.2020.105253
  • [42] Phan, T., Kadivar E., Nguyen V.T., Moctar O., Park W.: Thermodynamic effects on single cavitation bubble dynamics under various ambient temperature conditions. Phys. Fluids 34(2022). doi: 10.1063/5.0076913
  • [43] Dehane A., Merouani S., Hamdaoui O., Alghyamah A.: A comprehensive numerical analysis of heat and mass transfer phenomenons during cavitation sono-process. Ultrason. Sonochem. 73(2021), 105498. doi: 10.1016/j.ultsonch.2021.105498
  • [44] Feng J., Muradoglu M., Kim H., Ault J.T., Stone H.A.: Dynamics of a bubble bouncing at a liquid/liquid/gas interface. J. Fluid Mech. 807(2016), 324–352. doi:10.1017/jfm.2016.517
  • [45] Melikhov V., Yakush S., Le T.: Evaluation of energy and impulse generated by superheated steam bubble collapse in subcooled water. Nucl. Eng. Des. 366(2020), 110753.
  • [46] Califano V., Calabria R., Massoli P.: Experimental evaluation of the effect of emulsion stability on micro-explosion phenomena for water-in-oil emulsions. Fuel 117(2015), 87–94. doi: 10.1016/j.fuel.2013.08.073
  • [47] Gilmore F.R.: The growth or collapse of a spherical bubble in a viscous compressible liquid. CaliCal. Tecn. Inst. Rep. Los Angeles 1952, 17–29.
  • [48] Prosperetti A.: Vapor bubbles. Annu. Rev. Fluid Mech. 49(2017), 221–248. doi:10.1146/annurev-fluid-010816-060221
  • [49] Bourguignon J.P., Brezis H.: Remarks on the Euler equation. J. Funct. Anal.15(1974), 341–363, 1974. doi: 10.1016/0022-1236(74)90027-5
  • [50] Pavlenko A., Koshlak H., Basok B., Hrabova T.: Thermomechanical homogenization in steam explosion. Rocz. Ochr. Śr. 25(2023), 9–15.
  • [51] Shepherd J.E., Sturtevant B.: Rapid evaporation at the superheat limit. J. Fluid Mech. 121(1982), 379–388. doi: 10.1017/S0022112082001955
  • [52] Lesin S., Baron A., Branover G., Merchuk I.: Experimental studies of direct contact boiling at the superheat limit. High Temp. 31(1993), 866.
  • [53] Vogel A., Lauterborn W., Timm R.: Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech.206(1989), 299–338.
  • [54] Qin D., Lei S., Chen B., Li Z., Wang W., Ji X.: Numerical investigation on acoustic cavitation characteristics of an air-vapor bubble: Effect of equation of state for interior gases. Ultrason. Sonochem. 97(2023), 106456. doi: 10.1016/j.ultsonch.2023.106456
  • [55] Nigmatulin R.I., Khabeev N.S., Nagiev F.B.: Dynamics, heat and mass transfer of vapour-gas bubbles in a liquid. Int. J. Heat Mass Transf. 24(1981), 1033–1044. doi:10.1016/0017-9310(81)90134-4
  • [56] Merouani S., Hamdaoui O., Rezgui Y., Guemini M.: Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles. Ultrason. Sonochem.21(2014), 53–59. doi: 10.1016/j.ultsonch.2013.05.008
  • [57] Fuster D., Dopazo C., Hauke G.: Liquid compressibility effects during the collapse of a single cavitating bubble. J. Acoust. Soc. Am. 129(2011), 122–131. doi:10.1121/1.3502464
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b136e30f-6a23-46eb-93c0-1107d6a63cbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.