PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected issues related to costs of thermal energy carriers and carbon dioxide emissions for a historic sacral building

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of this article is estimation of the heating energy demand and annual heating costs for classical sacral building equipped with ground source heat pump or gas boiler. For this purposes a simulation model in the Matlab Simulink 2022b has been developed. Heat losses through the building elements were analysed and elements requiring thermal insulation were indicated. According to the research, current state of the building (without thermal insulation) require 241.73 kW of peak thermal power and 227.03 MWh of thermal energy annually. Values were calculated for 107 days heating season and +12°C of internal temperature. According to the results it is possible to reduce peak power to 107.78 kW (44.5%), and energy consumption to 70.53 MWh (31.1%) in relation to primary values. Annual heating costs presented as a Variant 4 is 5 386 EUR for Ground Heat Pump and 7 071 EUR for gas heating with CO2 emission costs included. Variant 5 presents the possibility of additional reduction of maximum heating power, which affects the final cost of the installation.
Słowa kluczowe
Twórcy
  • Department of Fundamentals of Engineering and Energy, Institute of Mechanical Engineering, Warsaw University of Life Sciences, ul. Nowoursynowska 164, 02-787 Warsaw, Poland
  • Department of Fundamentals of Engineering and Energy, Institute of Mechanical Engineering, Warsaw University of Life Sciences, ul. Nowoursynowska 164, 02-787 Warsaw, Poland
  • Faculty of Transport, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
  • Faculty of Electrical Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-662 Warsaw, Poland
  • Faculty of Electrical Engineering, Gdynia University of Technology, ul. Morska 83, 81-225 Gdynia, Poland
Bibliografia
  • Dzięki za doprecyzowanie. Oto poprawiona wersja: zachowano oryginalny zapis, połączono wyrazy łamane na końcu wiersza, zakończono każdy wiersz kropką, a **linki pozostają nieaktywne** (czyli jako czysty tekst, bez aktywnego hiperłącza).
  • 1. Talbot, R.; Hashemi, A.; Ashton, P.; Picco, M. Identifying Heating Technologies Suitable for Historic Churches, Taking into Account Heating Strategy and Conservation through Pairwise Analysis. In: Proceedings of the E3S Web of Conferences; 2021; Vol. 246.
  • 2. Santamouris, M.; Vasilakopoulou, K. Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation. e-Prime - Advances in Electrical Engineering, Electronics and Energy 2021, 1, 100002, https://doi.org/10.1016/j.prime.2021.100002.
  • 3. Repelewicz, A. Rational increasing of energy efficiency of sacral buildings. Management Systems in Production Engineering 2017, 25, https://doi.org/10.1515/mspe-2017-0018.
  • 4. Talbot, R.; Hashemi, A.; Ashton, P.; Picco, M. Assessing Occupant Comfort in Historic Churches When Using Localised Heating Systems. In: Proceedings of the Building Simulation Conference Proceedings; 2023; Vol. 18.
  • 5. Cai, Y.K.; Xie, H.R.; Ma, Y.; Hokoi, S.; Li, Y.H. Active Environmental Control Strategies for Brick Historical Buildings, Combining Heritage Conservation and Thermal Comfort. In: Proceedings of the Journal of Physics: Conference Series; 2021; Vol. 2069.
  • 6. Zhang, Y.; Olofsson, T.; Nair, G.; Zhao, C.; Yang, B.; Li, A. Cold Windows Induced Airflow Effects on the Thermal Environment for a Large Single-Zone Building. In: Proceedings of the E3S Web of Conferences; 2020; Vol. 172.
  • 7. Broström, T.; Wessberg, M. The Power from above - A Novel Church Heating System. In: Proceedings of the IOP Conference Series: Earth and Environmental Science; 2021; Vol. 863.
  • 8. Aste, N.; Torre, S. Della; Adhikari, R.S.; Buzzetti, M.; Del Pero, C.; Leonforte, F.; Manfren, M. Sustainable church heating: The basilica Di Collemaggio case-study. Energy Build 2016, 116, https://doi.org/10.1016/j.enbuild.2016.01.008.
  • 9. Massarotti, N.; Mauro, A.; Normino, G.; Vanoli, L.; Verde, C.; Allocca, V.; Calcaterra, D.; Coda, S.; de Vita, P.; Forzano, C.; et al. Innovative solutions to use ground-coupled heat pumps in historical buildings: a test case in the city of Napoli, southern Italy. Energies (Basel) 2020, 14, https://doi.org/10.3390/en14020296.
  • 10. Napp, M.; Kalamees, T. Energy Use and indoor climate of conservation heating, dehumidification and adaptive ventilation for the climate control of a mediaeval church in a cold climate. Energy Build 2015, 108, https://doi.org/10.1016/j.enbuild.2015.08.013.
  • 11. Khalid, Y.; Ngwaka, U.; Papworth, J.; Ling-Chin, J.; Smallbone, A. Evaluation of decarbonisation options for heritage church buildings. Journal of Building Engineering 2023, 77, https://doi.org/10.1016/j.jobe.2023.107462.
  • 12. Pisello, A.L.; Petrozzi, A.; Castaldo, V.L.; Cotana, F. Energy Refurbishment of Historical Buildings with Public Function: Pilot Case Study. In: Proceedings of the Energy Procedia; 2014; Vol. 61.
  • 13. Branca, I.-C. Considerations regarding the solutions for heating and cooling of cult buildings. Bulletin of the Polytechnic Institute of Iași. Construction. Architecture Section 2021, 67, https://doi.org/10.2478/bipca-2021-0014.
  • 14. Metals, M.; Lesinskis, A.; Turauskis, K. Control of Indoor Climate of Historical Cult Buildings. In: Proceedings of the E3S Web of Conferences; 2021; Vol. 246.
  • 15. Semprini, G.; Galli, C.; Farina, S. Reuse of an Ancient Church: Thermal Aspect for Integrated Solutions. In: Proceedings of the Energy Procedia; 2017; Vol. 133.
  • 16. Marinosci, C.; Morini, G.L.; Semprini, G.; Garai, M. Preliminary Energy Audit of the Historical Building of the School of Engineering and Architecture of Bologna. In: Proceedings of the Energy Procedia; 2015; Vol. 81.
  • 17. Zhang, Y.; Zhao, C.; Olofsson, T.; Nair, G.; Yang, B.; Li, A. Field measurements and numerical analysis on operating modes of a radiant floor heating aided by a warm air system in a large single-zone church. Energy Build 2022, 255, https://doi.org/10.1016/j.enbuild.2021.111646.
  • 18. Aste, N.; Torre, S. Della; Adhikari, R.S.; Buzzetti, M.; Del Pero, C.; Leonforte, F.; Cardenas, H.E.H. CFD Comfort Analysis of a Sustainable Solution for Church Heating. In: Proceedings of the Energy Procedia; 2017; Vol. 105.
  • 19. Obstawski, P.; Tomczuk, K. High-temperature two-stage subcritical heat pump running on environmentally friendly refrigerants. Advances in Science and Technology Research Journal 2024, 18, 369–381, https://doi.org/10.12913/22998624/187103.
  • 20. Tomczuk, K.; Obstawski, P. Analysis of the cooperation of a compressor heat pump with a PV system. Sustainability 2024, 16, https://doi.org/10.3390/su16093797.
  • 21. Muñoz González, C.M.; León Rodríguez, A.L.; Suárez Medina, R.; Ruiz Jaramillo, J. Effects of future climate change on the preservation of artworks, thermal comfort and energy consumption in historic buildings. Appl Energy 2020, 276, 115483, https://doi.org/10.1016/j.apenergy.2020.115483.
  • 22. Sesana, E.; Bertolin, C.; Gagnon, A.S.; Hughes, J.J. Mitigating Climate Change in the Cultural Built Heritage Sector. Climate 2019, 7, https://doi.org/10.3390/cli7070090.
  • 23. Cabeza, L.F.; de Gracia, A.; Pisello, A.L. Integration of Renewable Technologies in Historical and Heritage Buildings: A Review. Energy Build 2018, 177, 96–111, https://doi.org/10.1016/j.enbuild.2018.07.058.
  • 24. Wessberg, M.; Broström, T.; Vyhlidal, T. A Method to Determine Heating Power and Heat up Time for Intermittent Heating of Churches. Energy Procedia 2017, 132, 915–920, https://doi.org/10.1016/j.egypro.2017.09.720.
  • 25. Malaguti, V.; Lodi, C.; Tartarini, P. Dynamic analysis of the role of thermal inertia in the heating system control of historical and monumental buildings. Tecnica Italiana-Italian Journal of Engineering Science 2019, 63, https://doi.org/10.18280/ti-ijes.632-430.
  • 26. Vallati, A.; Di Matteo, M.; Fiorini, C.V. Retrofit proposals for energy efficiency and thermal comfort in historic public buildings: The case of the engineering faculty’s seat of Sapienza University. Energies (Basel) 2023, 16, https://doi.org/10.3390/en16010151.
  • 27. Resuli, P.; Dervishi, S. Thermal Performance of Cultural Heritage Italian Housing in Albania. In: Proceedings of the Energy Procedia; 2015; Vol. 78.
  • 28. Saio, C.; Nocentini, K.; Tagliafico, L.A.; Biwole, P.H.; Achard, P. Application of advanced insulating materials in historical buildings. International Journal of Heat and Technology 2017, 35, https://doi.org/10.18280/ijht.35Sp0147.
  • 29. Webb, A.L. Energy Retrofits in historic and traditional buildings: A review of problems and methods. Renewable and Sustainable Energy Reviews 2017, 77.
  • 30. Ceroni, F.; Ascione, F.; Masi, R.F. De; Rossi, F. De; Pecce, M.R. Multidisciplinary Approach to Structural/Energy Diagnosis of Historical Buildings: A Case Study. In: Proceedings of the Energy Procedia; 2015; Vol. 75.
  • 31. Magrini, A.; Franco, G.; Guerrini, M. The Impact of the Energy Performance Improvement of Historic Buildings on the Environmental Sustainability. In: Proceedings of the Energy Procedia; 2015; Vol. 75.
  • 32. Melin, C.B.; Legnér, M. The relationship between heating energy and cumulative damage to painted wood in historic churches. Journal of the Institute of Conservation 2014, 37, https://doi.org/10.1080/19455224.2014.939096.
  • 33. Aparicio-Fernández, C.; Torner, M.E.; Cañada-Soriano, M.; Vivancos, J.L. Analysis of the energy performance strategies in a historical building used as a music school. Developments in the Built Environment 2023, 15, https://doi.org/10.1016/j.dibe.2023.100195.
  • 34. Emmi, G.; Zarrella, A.; De Carli, M.; Moretto, S.; Galgaro, A.; Cultrera, M.; Di Tuccio, M.; Bernardi, A. Ground source heat pump systems in historical buildings: Two italian case studies. In: Proceedings of the Energy Procedia; 2017; Vol. 133.
  • 35. Baborska-Narożny, M.; Laska, M.; Fidrów-Kaprawy, N.; Małyszko, M. Circadian Winter Thermal Profiles and Thermal Comfort in Historical Housing - Field Study. In: Proceedings of the Journal of Physics: Conference Series; 2021; Vol. 2069.
  • 36. Marina Domingo, A.M.; Rey-Hernández, J.M.; San José Alonso, J.F.; Crespo, R.M.; Rey Martínez, F.J. Energy efficiency analysis carried out by installing district heating on a university campus. A case study in Spain. Energies (Basel) 2018, 11, https://doi.org/10.3390/en11102826.
  • 37. Elnagar, E.; Munde, S.; Lemort, V. Energy efficiency measures applied to heritage retrofit buildings: A simulated student housing case study in Vienna. Heritage 2021, 4, https://doi.org/10.3390/heritage4040215.
  • 38. Staffell, I.; Pfenninger, S.; Johnson, N. A Global model of hourly space heating and cooling demand at multiple spatial scales. Nat Energy 2023, 8, https://doi.org/10.1038/s41560-023-01341-5.
  • 39. Basińska, M. The use of multi-criteria optimization to choose solutions for energy-efficient buildings. Bulletin of Polish Academy of Sciences Technical Sciences 2017, 65, 815–824.
  • 40. Vargová, A.; Ingeli, R. Assessment of the energy demands for heating in an historic building. Case study: renewal of a functionalist building of the infectious diseases pavilion in Topoľčany, Slovakia. Slovak Journal of Civil Engineering 2021, 29, 29–36, https://doi.org/10.2478/sjce-2021-0025.
  • 41. Zulgowska-Zgrzywa, M.; Piechurski, K.; Stefanowicz, E.; Baborska-Narożny, M. Multi-criteria assessment of the scenarios of changing the heating system in apartments in historical buildings in Wroclaw (Poland) – Case study. Energy Build 2022, 254, 111611, https://doi.org/10.1016/j.enbuild.2021.111611.
  • 42. Miasto i Gmina Kosów Lacki. City of Kosów Lacki Web Site. Available online: https://kosowlacki.pl/page/zabytki (accessed on 13 September 2024).
  • 43. Wikipedia. Józef Pius Dziekoński. Available online: https://pl.wikipedia.org/wiki/J%C3%B3zef_Pius_Dzieko%C5%84ski (accessed on 13 September 2024).
  • 44. Viessmann Vitocal Datasheet. Available online: https://viessmanndirect.co.uk/files/499b1238-03e0-4b0c-b7d5-adda016de3ff/Technical%20Guide.pdf?srsltid=AfmBOorEGF3bS1fJo5ZPgGS6eMQcWZtrnvx-2YwDxySoRSdUiWF364Ut (accessed on 26 September 2024).
  • 45. Wytyczne Dotyczące Konwersji - Emisje Gazów Cieplarnianych. Available online: https://www.parp.gov.pl/storage/grants/documents/105/Wytyczne-dotyczce-konwersji-emisje-gazw-cieplarnianych_20200225.pdf (accessed on 27 September 2024).
  • 46. CO2 Emission Allowances Price in EU ETS System.
  • 47. Adamczewski, T.; Kleinschmidt, P. Budynki w pułapce gazowej. Available online: https://www.forum-energii.eu/download/pobierz/budynki-w-pulapce-gazowej (accessed on 2 December 2024).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b12b3510-ffc3-468e-83a7-b043b6140ac5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.