PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure evolution in directionally solidifying Cu-17 at.% Al eutectic alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An attempt of direct solidification (DS) of Cu-17 at. %Al eutectic alloy is presented in the paper. The chosen alloy belongs to the copper-rich eutectic region in the Cu–Al phase diagram. The alloy was remelted and solidified in a vertical furnace of Bridgman type with a moving crystallization zone. Thus, the expected structure will result in an arranged distribution of two phases in the bulk of the material. However, due to cooling the mentioned alloy down to room temperature, the phase transformations occur according to the respective phase diagram, including β phase decomposition through eutectoid and peritectoid reactions. The crystallized material consisted of the following phases α solution and γ1 (Cu9Al4) phase. Structure observations, determination of the formed phases and texture analysis of the obtained material are described. Mechanical properties received from a tensile test are also included.
Rocznik
Strony
art. no. e144604
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] F.L. Ver Snyder, R.W. Guard, “Directional grain structure for high temperature strength,” Trans. ASM, vol. 52, pp. 485–492, 1960.
  • [2] M. Philippov et al, “Modeling of dynamics of big size ZnGeP2 crystal growth by vertical Bridgman technique,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, pp. 283–290, 2018, doi: 10.24425/123434.
  • [3] H.J. Scheel, “Historical aspects of crystal growth technology,” J. Cryst. Growth, vol. 211, pp. 1–12, 2000, doi: 10.1016/S0022-0248(99)00780-0.
  • [4] A.J. Clarke et al., “Microstructure selection in thin-sample directional solidification of an Al-Cu alloy: In situ X-ray imaging and phase-field simulations,” Acta Mater., vol. 129, pp. 203–216, 2017, doi: 10.1016/j.actamat.2017.02.047.
  • [5] G. Boczkal, “Second phase morphology in the Zn-Ti0.1-Cu0.1 single crystals obtained at different growth rates,” Arch. Met. Mater., vol. 57, pp. 479484, 2012, doi: 10.2478/v10172-012-0049-9.
  • [6] G. Boczkal, B. Mikułowski, I. Hünsche, C.-G. Oertel, and W. Skrotzki, “Precipitation of intermetallic phase in Zn–Ti alloy single crystals,” Cryst. Res. Technol., vol. 43, pp. 135–140, 2008, doi: 10.1002/crat.200711068.
  • [7] G. Boczkal, B. Mikułowski, C.-G. Oertel, and W. Skrotzki, “Work-hardening characteristics of Zn–Ti alloy single crystals,” Cryst. Res. Technol., vol. 45, pp. 111–114, 2010, doi: 10.1002/crat.200900537.
  • [8] G. Boczkal, “Structure and properties of Zn–Ti0.2–Cu0.15 single crystal containing eutectic precipitates,” Arch. Met. Mater., vol. 58, pp. 1019–1022, 2013, doi: 10.2478/amm-2013-0020.
  • [9] H. Bei, E.P. George, E.A. Kenik, and G.M. Pharr, “Directional solidification and microstructures of near-eutectic Cr-Cr3Si alloys,” Acta Mater., vol. 51, pp. 6241–6252, 2003, doi: 10.1016/S1359-6454(03)00447-6.
  • [10] S.E. Kim, Y.T. Lee, M.H. Oh, H. Inui, and M. Yamaguchi, “Directional solidifcation of TiAl-Si alloys using apolycrystalline seed,” Intermetallics, vol. 8, pp. 399–405, 2000, doi: 10.1016/S0966-9795(99)00122-3.
  • [11] M. Yamaguchi, D.R. Johnson, H.N. Lee, H. Inui, “Directional solidifcation of TiAl-base alloys,” Intermetallics, vol. 8, pp. 511–517, 2000, doi: 10.1016/S0966-9795(99)00157-0.
  • [12] C. Cui, J. Zhang, B. Li, M. Han, L. Liu, and H. Fu, “The preferential orientation of the directionally solidified Si–TaSi2 eutectic in situ composite,” J. Cryst. Growth, vol. 309, pp. 93–96, 2007, doi: 10.1016/j.jcrysgro.2007.09.001.
  • [13] C. Cui, J. Zhang, H. Su, L. Liu, and H. Fu, “Growth mechanism of the directionally solidified Si–TaSi2 eutectic in situ composite,” J. Cryst. Growth, vol. 311, pp. 2555–2559, 2009, doi: 10.1016/j.jcrysgro.2009.02.014.
  • [14] H. Bei and E.P. George, “Microstructures and mechanical properties of a directionally solidified NiAl–Mo eutectic alloy,” Acta Mater., vol. 53, pp. 69–77, 2005, doi: 10.1016/j.actamat.2004.09.003.
  • [15] P. Ferrandini, W.W. Batista, and R. Caram, “Influence of growth rate on the microstructure and mechanical behaviour of a NiAl–Mo eutectic alloy,” J. Alloy. Compd., vol. 381, pp. 91–98, 2004, doi: 10.1016/j.jallcom.2004.02.052.
  • [16] M. Gündüz and E. Çadırlı, “Directional solidification of aluminium–copper alloys,” Mater. Sci. Eng. A, vol. 327, pp. 167–185, 2002, doi: 10.1016/S0921-5093(01)01649-5.
  • [17] X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, “Phase equilibria in the Cu-rich portion of the Cu–Al binary system,” J. Alloy. Compd., vol. 264, pp. 201–208, 1998, doi: 10.1016/S0925-8388(97)00235-1.
  • [18] T.B. Massalski, J.L. Murray, L.H. Bennet, and H. Baker, Binary Alloy Phase Diagrams. Metals Park OH: American Society for Metals, 1986.
  • [19] S.M. Liang and R. Schmid-Fetzer, “Thermodynamic assessment of the Al–Cu–Zn system, part II: Al–Cu binary system,” Calphad, vol. 51, pp. 252–260, 2015, doi: 10.1016/j.calphad.2015.10.004.
  • [20] R. Hielscher and H. Schaeben, “A novel pole figure inversion method: specification of the MTEX algorithm,” J. Appl. Crystallogr., vol. 41, pp. 1024–1037, 2008, doi: 10.1107/S0021889808030112.
  • [21] U. Mizutani, M. Inukai, H. Sato, and E.S. Zijlstra, Electron Theory of Complex Metallic Alloys, in Physical Metallurgy. D.A. Laughlin, K. Hono, Eds., vol. 1, 5th ed., Elsevier: Amsterdam, 2014, pp. 103–200, doi: 10.1016/B978-0-444-53770-6.00002-2.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b1228f7c-7df8-4149-a7a0-dcc319814028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.