PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elastic shakedown limit of a steel lattice girder

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a solution for the problem concerning the behaviour of a steel lattice girder subjected to dynamic load pulses. The theory of shakedown is used in the analysis. It is assumed that such loads cause a non-elastic response which includes dissipation of energy causing deformations and residual forces developed in the structural members of the girder. At a certain intensity of these forces, the girder can react to subsequent load pulses without further dissipation of energy, behaving in the elastic region after shakedown. This condition is referred to as adaptation of the structure to assumed cyclic loading. Elastic shakedown limit is determined through a direct analysis of the girder's dynamic behaviour, i.e. by checking if energy dissipation decreases with loading cycles. This gives the number of load applications after which no further increase of the energy dissipation is observed. The existing permanent deformations persist and residual forces remain in the same state. The analysis takes into account the possibility that compressed members can buckle which may result in non-elastic, longitudinal and transverse vibrations of these members. Non-linear geometry of members is taken into account. Then a perfectly elastic-viscoplastic model of the material is used. The main goal is to determine the state of the non-elastic movements of the girder joints and the residual internal forces developed in the girder members after each load application. The values obtained in this way serve as the basis for describing the next loading cycle. It is possible to use the approach presented in the paper to evaluate the effects of accidental loads. Then it is checked whether a small number of repetitions of accidental load would result in exceeding the serviceability limit state criteria of the maximum permanent deformation or displacement and/or strain amplitudes. If so, the magnitude of accidental load is greater than the elastic shakedown limit. Some examples are given to illustrate the application of the theory of shakedown.
Rocznik
Tom
Strony
12--18
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Faculty of Civil Engineering and Geodesy, Military University of Technology, Warsaw, Poland
Bibliografia
  • 1. Bak, G. Bezpośrednia metoda różnicowa w dynamice konstrukcji sprężystych. Mechanika i Komputery 5, 159–175 (1983).
  • 2. Blazevicius, G. & Atkociunas, J. Eurocode stability requirements in optimal shakedown truss design. Engineering Structures and Technologies 6, 18–24 (1 2014).
  • 3. Bodancky, M & Gopshkov, L. Pacchetkonctpyktsiyu Bezhishch (Moskwa, 1974).
  • 4. Bąk, G. & Niepostyn, D. Projektowanie konstrukcji z uwzględnieniem obciążeń wyjątkowych. Inżynieria i Budownictwo 9, 394–397 (357 1974).
  • 5. Clark, D. & Duwez, P. The influence of strain rate on same tensile properties of steel. Proc. Ener. Soc. Testing Materials 50, 560–575 (1950).
  • 6. Giambanco, F. & Palizzolo, L. conditions for shakedown design of trusses. Computational Mechanics 16, 369–378 (6 1995).
  • 7. Heidari, A. & Galishnikova, V. Shakedown analysis of the truss and comparing with the fundamental theoroms of alastic:plastic analysis implemented in a home - pakege and ansys. Rudn Journal of Engineering Reserches 1, 5–15 (2014).
  • 8. Kaliszky, S. & Logo, J. Plastic behaviour and stability constraints in the shakedown analysis and optimal design of trusses. Structural and Multidisciplinary Optimization 24, 118–124 (2 2002).
  • 9. Konig, J. Podstawowe twierdzenia z zakresu teorii dostosowywania się konstrukcji sprężysto-plastycznych do obciążeń zmiennych w czasie. Mechanika Teoretyczna i Stosowana 2, 149–158 (8 1970).
  • 10. Konig, J. Shakedown of Elastic-Plastic Structures (Warsaw, 1987).
  • 11. Leu, S. & Li, J. Shakedown analysis of truss structures with nonlinear kinematic hardening. International Journal of Mechanical Sciences 103, 172–180 (2015).
  • 12. Madah, H. & Amir, O. Truss optimization with buckling considerations using geometrically nonlinear beam modeling. Computers and Structures 192, 233–247 (2017).
  • 13. Perzyna, P. Teoria lepkoplastyczności (Warszawa, 1966).
  • 14. Popov, H. & Pactgyev, B. Pacchetzhelezobetonnyx konctpyktsiyna deyctvie kpatkovpemennyx dinamicheckix nagpyzok (rus.) (Moscow, 1964).
  • 15. Żukowski, S. Ocena bezpieczeństwa płaskich konstrukcji prętowych w aspekcie teorii przystosowania (Wrocław, 2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b120bc7d-6d80-446f-8bb7-be9e0a38caf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.