Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cloud data storages in their internal structure are not using their full potential functionality because of the complexity of behavior of network traffic, which affects the quality of service. The paper describes various models of network traffic and analyzes the most promising models for cloud data storages that take into account the phenomenon of self-similarity. The result of research found the frequency of cloud data warehouse traffic and that the intensity of storage load mainly depends on the incoming and outgoing traffic. Sufficiently high value of Hurst parameter indicates the potential for modelling and prediction of con-gestion cloud data storage in the long run.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
30--43
Opis fizyczny
Bibliogr. 16 poz.,fig.
Twórcy
autor
- Lviv Polytechnic National University, Ukraine, Ternopil, Monastyrskogo str., 42/4
Bibliografia
- [1] Harmantzia F. C., Hatzinakos D.: Heavy Network Traffic Modeling and Simulation using Stable FARIMA Processes. IEEE Trans. Signal Proc. Lett., 2000, pp. 48-50.
- [2] Heyman D. P., Sobel M. J.: Stochastic Models in Operations Research: Stochastic optimization. Dover Publications, 2003.
- [3] Hurst H.: Transaction of the American society of civil. Long term storage capacity of reservoirs, New York, 1951, pp. 770-799.
- [4] Hurst H. E., Black R. P., Simaika Y. M.: Long-term storage: an experimental study. Constable, 1965.
- [5] Jain R., Routhier S.: Packet Trains – Measurements and a New Model for Computer Network Traffic. IEEE J. Sel. A. Commun., vol. 4, 2006, pp. 986-995.
- [6] Leland W. E. et al.: On the self-similar nature of Ethernet traffic (extended version). Volume. IEEE Press, Piscataway, NJ, USA, 1994, pp. 1-15.
- [7] Baskett F. et al.: Open, Closed, and Mixed Networks of Queues with Different Classes of Customers. ACM, vol. 22, New York, NY, USA, 1975, pp. 248-260.
- [8] Khayari R. et al.: The Pseudo-self-similar Traffic Model: Application and Validation. Elsevier Science Publishers B. V., vol. 56, Amsterdam, The Netherlands, 2004, pp. 3-22.
- [9] Willinger W. et al.: Self-similarity Through High-variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level. IEEE Press, vol. 5, Piscataway, USA, 1997, pp. 71-86.
- [10] Song Ch.: Packet Train Model: Optimizing Network Data Transfer Performance. The University of Wisconsin – Madison, 1989.
- [11] Stallings W.: High-speed networks and internets: performance and quality of service. Pearson Education, 2002.
- [12] Tanenbaum A. S., Wetherall D. J.: Computer Networks. Prentice Hall, 2011.
- [13] Vacche A.D., Lee S.K.: Mastering Zabbix. http://books.google.co.uk/books?id=d1ZwAgAAQBAJ, 2013.
- [14] Бессараб В.І., Ігнатенко Е.Г., Черівнський В.В.: Генератор самоподібного трафіку для моделей інформаційних мереж. ДонНТУ, vol. 15, no. 130, Донецьк, 2008, pp. 23-29.
- [15] Бєльков Д.В.: Дослідження мережевого трафіку. ДонНТУ, vol. 10, no. 153, Донецьк, 2009, pp. 212-215.
- [16] Платов В.В., Петров В.В.: Дослідження самоподібної структури телетрафіку бездротової. vol. 3, 2004, pp. 38-49.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b11b927e-6ef1-44cc-9d12-3065b1f71854