Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents a computational model build with the use of artificial neural networks optimized by genetic algorithm. This model was used to research and prediction of the impact of chemical elements and heat treatment conditions on the mechanical properties of ferrite stainless steel. Optimization has allowed the development of artificial neural networks, which showed a better or comparable prediction result in comparison to un-optimized networks has reduced the number of input variables and has accelerated the calculation speed. The introduced computational model can be applied in industry to reduce the manufacturing costs of materials. It can also simplify material selection when an engineer must properly choose the chemical elements and adequate plastic and/or heat treatment of stainless steels with required mechanical properties.
Wydawca
Czasopismo
Rocznik
Tom
Strony
749--753
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Silesian University of Technology, Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, 18a Konarskiego Str., 44-100 Gliwice, Poland
Bibliografia
- [1] L. A. Dobrzański, Fundamentals of Materials Science and Metallurgy, WNT, Warszawa (2002).
- [2] L. A. Dobrzański, Metal Engineering Materials, WNT, Warszawa(2004) (in polish).
- [3] L. A. Dobrzański, R. Honysz, J. Mach. Eng. 11 (1-2), 102-119 (2011).
- [4] M. Musztyfaga-Staszuk, R. Honysz, Arch. Metall. Mater. 60 (3), 673-1678 (2015), DOI:10.1515/amm-2015-0290.
- [5] L. A. Dobrzański, R. Honysz, J. Achiev. Mater. Manuf. Eng. 35(2), 138-145 (2009).
- [6] A. Marciniak, J. Korbicz, Data preparation and planning of the experiment. in: R. Tadeusiewicz, J. Korbicz, L. Rutkowski, W. Duch (Eds), Artificial neural networks in biomedical engineering. Volume 9 (ed.), EXIT Academic Publishing House, Warsaw (2013).
- [7] W. Sitek, Metodologia projektowania stali szybkotnących z wykorzystaniem narzędzi sztucznej inteligencji, International Ocsco World Press, Gliwice (2010) (in Polish).
- [8] W. Feng, S. Yang, J. Appl. Phys. 122 (12) (2016), DOI:10.1007/s00339-016-0546-1.
- [9] H. Liu, J. Yu, D. Wang, D. Zou, Mater. Sci. Forum 695, 401-404 (2011), DOI:10.4028/www.scientific.net/MSF.695.401.
- [10] S. Mandal, P. V. Sivaprasad, S. Venugopal, J. Eng. Mater.-T. Asme. 129 (2), 242-247 (2007) DOI:10.1115/1.2400276.
- [11] R. Kapoor, D. Pal, J. K. Chakravartty, J. Mater. Process Tech. 169(2) 199-205 (2005), DOI:10.1016/j.jmatprotec.2005.03.022.
- [12] S. Jovic, M. Lazarevic, Z. Sarkocevic, D. Lazarevic, Laser Eng. 40 (4-6), 239-251 (2018).
- [13] N. E. Karkalos, A. P. Markopoulos, Proc. Manuf. 22,107-113 (2018) DOI:10.1016/j.promfg.2018.03.017.
- [14] A. Dimatteo, M. Vannucci, V. Colla, ISIJ Inter. 54 (1) 171-178 (2014) DOI: 10.2355/isijinternational.54.171.
- [15] M. Madic, M. Radovanovic, D. Petkovic, International Journal of Advanced Intelligence Paradigms 9, 4, 370-384 (2017).
- [16] M. J. Jimenez-Come, E. Munoz, R. Garcia, V. Matres, M. L. Martin, F. Trujillo, I. Turiase, J. Appl. Logic 10 (4) 291-297 (2012) DOI:10.1016/j.jal.2012.07.005.
- [17] C. Shen, C. Wang, X. Wei, Y. Li, S. van der Zwaag, W. Xua, Acta. Mater. 179, 201-214 (2019) DOI:10.1016/j.actamat.2019.08.033.
- [18] J. Adamczyk. Metallurgy theoretical part. 1. The structure of metals and alloys. Silesian University of Technology, Gliwice (1999) (in Polish).
- [19] J. Adamczyk. Metallurgy theoretical part. 2. Plastic deformation, strengthening and cracking. Silesian University of Technology, Gliwice (2002) (in Polish).
- [20] W. Sitek, J. Achiev. Mater. Manuf. Eng. 21, (2) 65-68 (2007).
- [21] J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann. Arbor., MI, (1975).
- [22] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolutionary programs, WNT, Warsaw (2003).
- [23] T. Trzepieciński, Mechanika 4, 11, 63-72 (2011).
- [24] L. A. Dobrzański, Engineering materials and materials design. Fundamentals of materials science and physical metallurgy, WNT, Warsaw-Gliwice (2006) (in Polish).
- [25] G. E. Totten, Steel heat treatment: metallurgy and technologies, CRC Press, New York, 2006.
- [26] T. Olszewski, P. Boniecki, J. Weres, Genetic algorithms as a optimization tool applied in neural networks, Agricultural Engineering 2, 137-143 (2005)
- [27] L. Rutkowski, Methods and techniques of artificial intelligence, PWN, Warszawa, 2006.
- [28] R. Tadeusiewicz, Artificial neural networks, Academic Publishing House, Warsaw 2001.
- [29] T. Trzepieciński, Genetic algorithms as an optimization tool of neural networks modelling friction phenomenon, Mechanika 83/4 (2011) 63-72.
- [30] http://www.statsoft.pl/ accessed: 10.12.2019.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b10991e8-51dc-4cfd-b648-c760682aaa80