PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Validation and statistical analysis of the Group for High Resolution Sea Surface Temperature data in the Arabian Gulf

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The combined effect of climate change and steadily increasing seawater demand for industrial and domestic purposes in the Arabian Gulf region has a significant impact on the ecosystem in this region. Additionally, this effect may reduce the efficiency and increase the operating costs of industrial facilities that utilize seawater for cooling and other purposes. In this context, it is important to know various statistical characteristics of the sea surface temperature (SST) and their trends, in addition to the mean climatological characteristics. The analysis conducted in this study utilized a 17-year Group for High Resolution Sea Surface Temperature Level 4 dataset of 0.01 × 0.01° spatial resolution. First, the dataset was compared against a 2-year seawater temperature measurements at the ten offshore buoys in the relatively shallow coastal waters of the United Arab Emirates between Ras Ghumais and Dubai, which showed a reasonably good agreement between the two datasets, with the estimated root mean square deviations ranging from 0.5 to 0.9°C. Subsequently, several statistical SST characteristics were calculated. The trend analysis showed not only positive tendencies in the mean SSTs of up to 0.08°C/year in the northern Gulf, but also the trends in the annual percentile exceedances, particularly the 95th percentiles (near-maximum SSTs), which increased by approximately 0.07°C/year in the western United Arab Emirates and eastern Qatar waters. On the contrary, the 5th percentiles (near-minimum SSTs) decreased by up to 0.1°C/year, especially in the waters around Bahrain, Qatar, and the western United Arab Emirates. These results indicate that extreme hot and cold SST events in the Gulf are becoming more frequent and more extreme than before.
Czasopismo
Rocznik
Strony
497--515
Opis fizyczny
Bibliogr. 45 poz., map., rys., tab., wykr.
Twórcy
  • Department of Nuclear Engineering, Emirates Nuclear Technology Center, Khalifa University of Science and Technology, UAE
  • Department of Civil, Environmental, and Ocean Engineering (CEOE), Stevens Institute of Technology, Hoboken, NJ, USA
  • ENGEOS Lab, Research Division, Khalifa University of Science and Technology, UAE
  • ENGEOS Lab, Research Division, Khalifa University of Science and Technology, UAE
autor
  • Department of Nuclear Engineering, Emirates Nuclear Technology Center, Khalifa University of Science and Technology, UAE
  • Federal Authority for Nuclear Regulation, Abu Dhabi, UAE
autor
  • Department of Nuclear Engineering, Emirates Nuclear Technology Center, Khalifa University of Science and Technology, UAE
Bibliografia
  • 1. Aeby, G.S., Howells, E., Work, T., Abrego, D., Williams, G.J., Wedding, L.M., Jamie, M., Caldwell, J.M., Moritsch, M., Burt, J.A., 2020. Localized outbreaks of coral disease on Arabian reefs are linked to extreme temperatures and environmental stressors. Coral Reefs 39, 829-846. https://doi.org/10.1007/s00338-020-01928-4
  • 2. Ahmad, F., Sultan, S.A.R., 1990. Annual mean surface heat fluxes in the Arabian Gulf and the net heat transport through the Strait of Hormuz. Atmosphere-Ocean 29, 54-61. https://doi.org/10.1080/07055900.1991.9649392
  • 3. Almazroui, M., Islam, M.N., Dambul, R., Jones, P.D., 2014. Trends of temperature extremes in Saudi Arabia. Int. J. Climatol. 34,808-826. https://doi.org/10.1002/joc.3722
  • 4. Azam, M.H., Elshorbagy, W., Nakata, K., 2006. Threedimensional modeling of the Ruwais coastal area. J. Waterw. Port C.-ASCE 132 (6), 487-495. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:6(487)
  • 5. Al Azhar, M., Temimi, M., Zhao, J., Ghedira, H., 2016. Modeling of circulation in the Arabian Gulf and the Sea of Oman: Skill assessment and seasonal thermohaline structure. J. Geophys. Res.-Oceans 121, 1700-1720. https://doi.org/10.1002/2015JC011038
  • 6. Al Sarmi, S.H., Washington, R., 2014. Changes in climate extremes in the Arabian Peninsula: analysis of daily data. Int. J. Climatol. 34, 1329-1345. https://doi.org/10.1002/joc.3772
  • 7. Al-Rashidi, T.B., El-Gamily, H.I., Amos, C.L., Rakha, K.A., 2009. Sea surface temperature trends in Kuwait Bay. Arabian Gulf. Nat. Hazards 50, 73-82. https://doi.org/10.1007/s11069-008-9320-9
  • 8. Al Senafi, F., Anis, A., 2015. Shamals and climate variability in the Northern Arabian/Persian Gulf from 1973 to 2012. Int. J. Climatol. 35, 4509-4528. https://doi.org/10.1002/joc.4302
  • 9. Banzon, V., Smith, T.M., Chin, T.M., Liu, C., Hankins, W., 2016. A long-term record of blended satellite and in situ sea-surface emperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 8, 165-176. https://doi.org/10.5194/essd-8-165-2016
  • 10. Bath, A., Shackleton, B., Botica, C., 2004. Development of temperature criteria for marine discharge from a large industrial seawater supplies project in Western Australia. In: Proc. of the 2004 Water Institute of Southern Africa (WISA) Biennial Conference, 2-6 May 2004, Cape Town, South Africa, 30, Water S.A., 589-599.
  • 11. Bogdanoff, A.S., Westphal, D.L., Campbell, J.R., Cummings, J.A., Hyer, E.J., Reid, J.S., Clayson, C.A., 2015. Sensitivity of infrared sea surface temperature retrievals to the vertical distribution of airborne dust aerosol. Remote Sens. Environ. 159, 1-13. https://doi.org/10.1016/j.rse.2014.12.002
  • 12. Chandy, J.V., Coles, S.L., Abozed, A.I., 1990. Seasonal cycles of temperature, salinity and water masses of the western Arabian Gulf. Oceanol. Acta 13, 73-281.
  • 13. Chowdhury, S., Al-Zahrani, M., 2013. Implications of climate change on water resources in Saudi Arabia. Arab J. Sci. Eng. 38, 1959-1971. https://doi.org/10.1007/s13369-013-0565-6.
  • 14. Claereboudt, M., 2009. Need for actual sea surface temperature data: case study from coral bleaching and remotely sensed “Degree Heating Weeks”. Workshop on Marine Monitoring Buoys. Middle East Desalination Research Center, Muscat, the Sultanate of Oman 28 April 2009
  • 15. Dubach, H.W., 1964. A summary of temperature-salinity characteristics of the Persian Gulf. National Oceanographic Data Center, General Series, Publ. G-4, 223 pp. https://doi.org/10.5962/bhl.title.39111
  • 16. Eager, R.E., Raman, S., Wootten, A., Westphal, D.L., Reid, J.S., Al Mandoos, A., 2008. A climatological study of the sea and land breezes in the Arabian Gulf region. J. Geophys. Res. - Atmos 113, D15106. https://doi.org/10.1029/2007JD009710
  • 17. Elhakeem, A., Elshorbagy, W., Bleninger, T., 2015. Long-term hydrodynamic modelling of the Arabian Gulf. Mar. Pollut. Bull. 94 (1-2), 19-36. https://doi.org/10.1016/j.marpolbul.2015.0
  • 18. Elshorbagy, W., Azam, M.H., Taguchi, K., 2006. Hydrodynamic characterization and modeling of the Arabian Gulf. J. Waterw. Port C.-ASCE 132 (1). https://doi.org/10.1061/(ASCE) 0733-950X(2006)132:1(47)
  • 19. Elshorbagy, W., Azam, M.H., Al Hakeem, A.A., 2013. Temperature-salinity modelling for Ruwais Coast, United Arab Emirates.Mar. Pollut. Bull. 73, 170-182. https://doi.org/10.1016/j. marpolbul.2013.05.025
  • 20. Environmental Research and Wildlife Development Agency (ER-WDA), Abu Dhabi, UAE, 1999. Federal Environmental Law 24/1999. Technical Guidance Document Standards and Limits for: Pollution to Air and Marine Environment. Occupational Exposure; Pesticides and Chemical Use.
  • 21. Hersbach, H., Bell, B., Berrisford, P., Dahlgren, P., Horanyi, A., Munoz-Sebater, J., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C. , 2020. The ERA5 Global Reanalysis: achieving a detailed record of the climate and weather for the past 70 years. European Geophysical Union General Assembly 2020, May 38, Vienna, Austria https://doi.org/10.5194/egusphere-egu2020-10375
  • 22. Kämpf, J., Sadrinasab, M., 2006. The circulation of the Persian Gulf: a numerical study. Ocean Sci. Dis. 2, 27-41. https://doi.org/10.5194/osd-2-129-2005
  • 23. Mahto, S.S., Mishra, V., 2019. Does ERA-5 outperform other re-analysis products for hydrologic applications in India? J. Geophys. Res.-Atmos. 124, 9423-9441. https://doi.org/10.1029/2019JD031155
  • 24. Mezhoud, N., Temimi, M., Zhao, J., Al Shehhi, M.R., Ghedira, H., 2016. Analysis of the spatio-temporal variability of seawater quality in the southeastern Arabian Gulf. Mar. Poll. Bull. 106 (1-2), 127-138. https://doi.org/10.1016/j.marpolbul.2016.03.016
  • 25. Ministry of Regional Municipalities, Environment and Water Resources, the Sultanate of Oman, 2005. Ministerial Decision No. 159/2005. Promulgating the Bylaws to Discharge Liquid Waste into the Marine Environment.
  • 26. Minnett, P., Kaiser-Weiss, A., 2012. Discussion document: Near-surface oceanic temperature gradients, Version 12 Jan 2012. Available at www.ghrsst.org. Last Access: 31 January 2021.
  • 27. Moradi, M., Kabiri, K., 2015. Spatio-temporal variability of SST and chlorophyll-a from MODIS data in the Persian Gulf. Mar. Poll. Bull. 98, 14-25. https://doi.org/10.1016/j.marpolbul.2015.07.018
  • 28. Nesterov, O., Scraggs, C., Smit, F., Mocke, G.P., 2010. Modelling of hydrodynamics and seawater temperature along the UAE Coast. In: Proc. Second International Conference on Coastal Zone Engineering and Management (Arabian Coast 2010). Muscat, Oman 1-3 November 2010.
  • 29. Noori, R., Tian, F., Berndtsson, R., Abbasi, M.R., Naseh, M.V., Modabberi, A., Soltani, A., Kløve, B., 2019. Recent and future trends in sea surface temperature across the Persian Gulf and Gulf of Oman. PLOS ONE 14 (2), e0212790. https://doi.org/10.1371/journal.pone.0212790
  • 30. Paparella, F., Xu, X., Vaughan, G.O., Burt, J.A., 2019. Coral bleaching in the Persian/Arabian Gulf is modulated by summer winds, Front. Mar. Sci. 6, 205. https://doi.org/10.3389/fmars.2019.00205
  • 31. Pastor, F., Valiente, J.A., Palau, J.L., 2018. Sea surface temperature in the Mediterranean: trends and spatial patterns (1982-2016). Pure Appl. Geophys 175, 4017-4029. https://doi.org/10.1007/s00024-017-1739-z
  • 32. Pous, S.P., Carton, X., Lazure, P., 2004. Hydrology and circulation in the Strait of Hormuz and the Gulf of Oman — Results from the GOGP99 Experiment. J. Geophys. Res. — Oceans 109. https://doi.org/10.1029/2003JC002146
  • 33. Pous, S., Lazure, P., Carton, X., 2015. A model of the general circulation in the Arabian Gulf and in the Strait of Hormuz: In-traseasonal to interannual variability. Cont. Shelf Res. 94, 55-70. https://doi.org/10.1016/j.csr.2014.12.008
  • 34. Qasim, S.Z., 1982. Oceanography of the northern Arabian Sea. Deep-Sea Res 29, 1041-1068. https://doi.org/10.1016/0198-0149(82)90027-9
  • 35. Reul, N., Chapron, B., Lee, T., Donlon, C., Boutin, J., Alory, G., 2014. Sea surface salinity structure of the meandering Gulf Stream revealed by SMOS sensor. Geophys. Res. Lett. 41 (9), 3141-3148. https://doi.org/10.1002/2014GL059215
  • 36. Reynolds, R.M., 1993. Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Mar. Pollut. Bull. 27, 35-59. https://doi.org/10.1016/0025-326X(93)90007-7
  • 37. Royal Commission for Jubail and Yanbu, Environmental Control Department, the Kingdom of Saudi Arabia, 2004. Royal Commission Environmental Regulation.
  • 38. Savo, V., Lepofsky, D., Benner, J.P., Kohfeld, K.E., Kohfeld, K.E., Bailey, J., Lertzman, K., 2016. Observations of climate change among subsistence-oriented communities around the world. Nat. Clim. Change 6, 462-473. https://doi.org/10.1038/nclimate2958
  • 39. Seidel, D.J., Fu, Q., Randel, W.J., Reichler, T.J., 2008. Widening of the tropical belt in a changing climate. Nat. Geosci. 1, 21-24. https://doi.org/10.1038/ngeo.2007.38
  • 40. Sheppard, C., Al-Husiani, M., Al-Jamali, F., Al-Yamani, F., Baldwin, R., Bishop, J., Benzoni, F., Dutrieux, E., Dulvy, N.K., Durvasula, R.S.V., Jones, D.A, Loughland, R., Medio, D., Nithyanan-dan, M., Pilling, G.M, Polikarpov, I., Price, A.R.G., Purkis, S., Riegl, B., Saburova, M., Namin, K.S., Taylor, O., Wilson, S., Zainal, K., 2010. The Gulf: A young sea in decline. Mar. Poll. Bull. 13-38. https://doi.org/10.1016/j.marpolbul.2009.10.017
  • 41. Shirvani, A., Nazemosadat, S.M.J., Kahya, E., 2015. Analysis of the Persian Gulf sea surface temperature: prediction and detection of climate change signals. Arab J. Geosci. 8, 2121-2130. https://doi.org/10.1007/s12517-014-1278-1
  • 42. Supreme Council for the Environment and Natural Reserves, the State of Qatar, 2002. Executive By-Law for the Environment Protection Law, the Decree Law No. 30 for the Year 2002.
  • 43. Swift, S.A., Bower, A.S., 2003. Formation and circulation of dense water in the Persian/Arabian Gulf. J. Geophys. Res. — Oceans 108 (1). https://doi.org/10.1029/2002JC001360
  • 44. Tahir, Z.R., Azhar, M., Mumtaz, M., Asim, M., Moeenuddin, G., Sharif, H., Hassan, S., 2020. Evaluation of the reanalysis surface solar radiation from NCEP, ECMWF, NASA, and JMA using surface observations for Balochistan, Pakistan. J. Renew Sustain. Ener. 12, 023703. https://doi.org/10.1063/1.5135381
  • 45. Xue, P., Eltahir, E.A.B., 2015. Estimation of the heat and water budgets of the Persian (Arabian) Gulf using a regional climate model. J. Climate 28, 5041-5062. https://doi.org/10.1175/JCLI-D-14-00189.1
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b100fca8-556b-4d98-8f97-7a225a1b8ffb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.