Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Microcellular combustible materials, based on poly(methyl methacrylate) (PMMA) bonded RDX, were fabricated by the pressure quench method using supercritical CO2. After foaming, the bulk density, porosity, expansion ratio and cell density were analyzed. Scanning Electron Microscopy (SEM) has also been used to investigate the influence of the foaming conditions (temperature, saturation pressure and depressurization time) and the RDX ratio on the porous structure. The skin-core structure was also observed after the pressure quench process. The mechanical sensitivities and burning performance were investigated by the friction sensitivity test, the impact sensitivity test and the closed vessel test, respectively.
Rocznik
Tom
Strony
257--269
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
autor
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
autor
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Bibliografia
- [1] Messmer A., Pfatteicher A., Schmid K., Kuglstatter W., Foamed Propellants with Energetic Binders, 31st Int. Annu. Conf. ICT, Karlsruhe, Germany, 2000, 111/1-13.
- [2] Shedge M., Patel C.H., Tadkod S.K., Murthy G.D., Polyvinyl Acetate Resin as a Binder Effecting Mechanical and Combustion Properties of Combustible Cartridge Case Formulations, Def. Sci. J., 2008, 58(3), 390-397.
- [3] DeLuca P.L., Williams J.C., Fibrillated Polyacrylic Fiber in Combustible Cartridge Cases, Ind. Eng. Chem. Prod. Res. Dev., 1984, 23(3), 438-441.
- [4] Zimmerman F., Development of 7.62-mm and 38-mm Combustible Cartridge Case Ammunition, J. Spacecr. Rockets, 1969, 6, 312-314.
- [5] Kurulkar G.R., Syal R.K., Singh H., Combustible Cartridge Case Formulation and Evaluation, J. Energ. Mater., 1996, 14(2), 127-149.
- [6] Böhnlein-Mauß J., Kröber H., Technology of Foamed Propellants, Propellants Explos. Pyrotech., 2009, 34(3), 239-244.
- [7] Böhnlein-Mauß, J., Eberhardt A., Fischer T.S., Foamed Propellants, Propellants Explos. Pyrotech., 2002, 27(3), 156-160.
- [8] Fischer T.S., Messmer A., Burning Characteristics of Foamed Polymer Bonded Propellants, 19th Int. Symposium of Ballistics, Interlaken, Switzerland, 2002, 139-139.
- [9] Li Y., Yang W., Ying S., Preparation and Characteristics of Foamed NC-based Propellants, 2014, Propellants Explos. Pyrotech., in press.
- [10] Ying S.J., Xu F.M., Research on Supercritical Fluid Foaming Technology for Preparation of Microcellular Foamed Propellants, Acta Armamentarii (Binggong Xuebao), 2013, 34(8), 1028-1036.
- [11] Chen X.R., Ying S.J., Xiao Z.G., Research on Preparation of Microfoam Oblate Spherical Propellants by Supercritical CO2, Acta Armamentarii (Binggong Xuebao), 2012, 5, 534-539.
- [12] Zhu B., Zha W., Yang J., Zhang C., Lee L.J, Layered-silicate Based Polystyrene Nanocomposite Microcellular Foam Using Supercritical Carbon Dioxide as Blowing Agent, Polymer, 2010, 51(10), 2177-2184.
- [13] Reverchon E., Cardea S., Production of Controlled Polymeric Foams by Supercritical CO2, J. Supercrit. Fluids, 2007, 40(1), 144-152.
- [14] Xu Q., Xianwen Ren X., Chang Y., Wang J., Yu L., Dean K., Generation of Microcellular Biodegradable Polycaprolactone Foams in Supercritical Carbon Dioxide, J. Appl. Polym. Sci., 2004, 94(2), 593-597.
- [15] Ruiz J.A.R., Viot P., Dumon M., Microcellular Foaming of Polymethylmethacrylate in a Batch Supercritical CO2 Process: Effect of Microstructure on Compression Behavior, J. Appl. Polym. Sci., 2010, 118(1), 320-331.
- [16] Yang W., Li Y., Ying S., Fabrication Thermoanalysis and Performance Evaluation Studies on RDX-based Microcellular Combustible Objects, 2014, Propellants Explos. Pyrotech., in press.
- [17] Colton J.S., Suh N.P., Nucleation of Microcellular Foam: Theory and Practice, Polym. Eng. Sci., 1987, 27(7), 500-503.
- [18] Colton J.S., Suh N.P., The Nucleation of Microcellular Thermoplastic Foam: Process Model and Experimental Results, Mater. Manuf. Processes, 1986, 1(3-4), 341-364.
- [19] Colton J.S., Suh N.P., The Nucleation of Microcellular Thermoplastic Foam with Additives: Part I: Theoretical Considerations, Polym. Eng. Sci., 1987, 27(7), 485-492.
- [20] Goel S.K., Beckman E.J., Generation of Microcellular Polymeric Foams Using Supercritical Carbon Dioxide. II: Cell Growth and Skin Formation, Polym. Eng. Sci., 1994, 34(14), 1148-1156.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0f811b7-1bc6-4bcf-9213-4027128e6a72