Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present research conducts free vibration analysis of annular rotating discs made from functionally graded porous materials, and nanocomposite reinforced carbon nanotubes face sheets. Pores distribution in the porous core is considered based on three different patterns, namely Nonsymmetric, Symmetric, and Monotonous ones across the thickness, and also, carbo nanotube dispersion in the face sheets is investigated randomly by considering their agglomeration effect. Kinematic relations of the mentioned structure regarding the shear deformation effects and based on the first-order theory are described, and then, variations of strain and kinetic energies by considering rotation via the calculus variation method are calculated. To extract the governing motion equations and associated boundary conditions, Hamilton's principle is employed, and then they are solved with the aid of the generalized differential quadrature method. After ensuring the correctness of the results obtained from the scripted code by comparing them in the simpler state with the previous research, the effect of different parameters such as pores’ distribution patterns, carbon nanotubes dispersion patterns and their agglomeration, core and face sheets thickness, and other parameters on the natural frequencies of the structure is investigated. Considering the obtained results, it can be found that increasing the porosity leads to a slight increment in the natural frequencies, generally, and increasing the carbon nanotubes’ mass fraction leads to significant enhancement in them. The outcomes of this study can be used in different industries, such as aerospace, military, and marine industries.
Czasopismo
Rocznik
Tom
Strony
art. 201, 1--20
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
autor
- University of Kashan, Faculty of Mechanical Engineering, Kashan, Iran
autor
- University of Kashan, Faculty of Mechanical Engineering, Kashan, Iran
autor
- University of Kashan, Faculty of Mechanical Engineering, Kashan, Iran
- Production and Recycling of Materials and Energy Research Center, Qom Branch, Islamic Azad University, Qom, Iran
Bibliografia
- 1. Hou Y, Choi KR, Ghazouani N, Kaveh A, Babaei Z, Kumar A. Static package design thorough thickness stretching and thermal environment effects for porous micro-scaled plates with piezo electric nanocomposite patches. Acta Mech. 2023;235:1235-54. https://doi.org/10.1007/S00707-023-03794-X/METRICS.
- 2. Jahangiri V, Sun C, Babaei H. Application of a new two dimensional nonlinear tuned mass damper in bi-directional vibration mitigation of wind turbine blades. Eng Struct. 2024;302: 117371. https://doi.org/10.1016/J.ENGSTRUCT.2023.117371.
- 3. Yang L, Ye M, Huang Y, Dong J. Study on mechanical proper ties of displacement-amplified mild steel bar joint damper. Iran J Sci Technol Trans Civ Eng. 2023. https:// doi. org/10.1007/s40996-023-01268-7.
- 4. Rao R, Sahmani S, Safaei B. Isogeometric nonlinear bending analysis of porous FG composite microplates with a central cutout modeled by the couple stress continuum quasi-3D plate theory. Arch Civ Mech Eng. 2021. https://doi.org/10.1007/S43452-021-00250-2.
- 5. Arshid E, Amir S, Loghman A. Thermoelastic vibration char acteristics of asymmetric annular porous reinforced with nano fillers microplates embedded in an elastic medium: CNTs Vs GNPs. Arch Civ Mech Eng. 2023. https:// doi.org/10.1007/s43452-023-00624-8.
- 6. Zhao Y, Lu M, Yue L, Xie L, Ge M. Influence of porous plate position on thermoelectric generator. Energy Rep. 2022;8:1045 50. https://doi.org/10.1016/j.egyr.2022.08.121.
- 7. Chaabani H, Mesmoudi S, Boutahar L, El Bikri K. A high-order finite element continuation for buckling analysis of porous FGM plates. Eng Struct. 2023;279: 115597. https://doi.org/10.1016/j. engstruct.2023.115597.
- 8. Chen D, Kitipornchai S, Yang J. Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct. 2016;107:39-48. https://doi. org/ 10.1016/j.tws.2016.05.025.
- 9. Ghorbanpour Arani A, Khani M, Khoddami Maraghi Z. Dynamic analysis of a rectangular porous plate resting on an elastic foundation using high-order shear deformation theory. Journal Vib Control. 2018. https://doi.org/10.1177/1077546317709388.
- 10. Jabbari M, Hashemitaheri M, Mojahedin A, Eslami MR. Thermal Buckling Analysis of Functionally Graded Thin Circular Plate Made of Saturated Porous Materials. J Therm Stress. 2014;37:202-20. https://doi.org/10.1080/01495739.2013.839768.
- 11. M. Mozafarjazi, R. Rabiee, Experimental and numerical study on the load-bearing capacity, ductility and energy absorption of RC shear walls with opening containing zeolite and silica fume, Eng. Solid Mech. (2024). https://growingscience.com/esm/online.html (accessed April 25, 2024).
- 12. Haghparast E, Ghorbanpour-Arani A, Arani AG. Effect of fluid structure interaction on vibration of moving sandwich plate with balsa wood core and nanocomposite face sheets. Int J Appl Mech. 2020;12:2050078. https://doi.org/10.1142/S1758825120500787.
- 13. Arshid E, Ghorbani MA, Momeni Nia MJ, Civalek Ö, Kumar A. Thermo-elastic buckling behaviors of advanced fluid-infiltrated porous shells integrated with GPLs-reinforced nanocomposite patches. Mech Adv Mater Struct. 2023. https://doi.org/10.1080/15376494.2023.2251015.
- 14. Arshid E, Momeni Nia MJ, Ghorbani MA, Civalek Ö, Kumar A. On the poroelastic vibrations of lightweight FGSP doubly curved shells integrated with GNPs-reinforced composite coatings in thermal atmospheres. Appl Math Model. 2023. https://doi.org/10.1016/j.apm.2023.07.036.
- 15. He L, Maalla A, Zhou X, Tang H. Buckling and post-buckling of aniso grid lattice-core sandwich plates with nanocomposite skins. Thin-Walled Struct. 2024;199: 111828. https:// doi.org/10.1016/j.tws.2024.111828.
- 16. Lu SF, Xue N, Ma WS, Song XJ, Jiang X. Linear and nonlinear dynamics responses of an axially moving laminated composite plate-reinforced with graphene nanoplatelets. Int J Struct Stab Dyn. 2024. https://doi.org/10.1142/S0219455425500361.
- 17. Su Y, Shen Z, Long X, Chen C, Qi L, Chao X. Gaussian filtering method of evaluating the elastic/elasto-plastic properties of sintered nanocomposites with quasi-continuous volume distribution. Mater Sci Eng A. 2023;872: 145001. https://doi.org/10.1016/j.msea.2023.145001.
- 18. Wang W, Jin Y, Mu Y, Zhang M, Du J. A novel tubular structure with negative Poisson’s ratio based on gyroid-type triply periodic minimal surfaces. Virtual Phys Prototyp. 2023. https://doi.org/10.1080/17452759.2023.2203701.
- 19. Tian R, Guan H, Lu X, Zhang X, Hao H, Feng W, Zhang G. Dynamic crushing behavior and energy absorption of hybrid auxetic metamaterial inspired by Islamic motif art. Appl Math Mech. 2023;44:345-62. https://doi.org/10.1007/s10483-023-2962-9.
- 20. Zhang X, Hao H, Tian R, Xue Q, Guan H, Yang X. Quasi-static compression and dynamic crushing behaviors of novel hybrid reentrant auxetic metamaterials with enhanced energy-absorption. Compos Struct. 2022;288: 115399.https://doi.org/10.1016/j.compstruct.2022.115399.
- 21. Sun L, Liang T, Zhang C, Chen J. The rheological performance of shear-thickening fluids based on carbon fiber and silica nano composite Phys. Fluids DOI. 2023;10(1063/5):0138294. 22. Xiang J, Chen J, Zheng Y, Li P, Huang J, Chen Z. Topological design for isotropic metamaterials using anisotropic material microstructures. Eng Anal Bound Elem. 2024;162:28-44. https://doi.org/10.1016/j.enganabound.2024.01.025.
- 23. Huang X, Chang L, Zhao H, Cai Z. Study on craniocerebral dynamics response and helmet protective performance under the blast waves. Mater Des. 2022;224: 111408. https://doi. org/10.1016/j.matdes.2022.111408.
- 24. Huang Y, Karami B, Shahsavari D, Tounsi A. Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Arch Civ Mech Eng. 2021. https:// doi.org/10.1007/S43452-021-00291-7.
- 25. Al-Furjan MSH, Dehini R, Paknahad M, Habibi M, Safarpour H. On the nonlinear dynamics of the multi-scale hybrid nano composite-reinforced annular plate under hygro-thermal environment. Arch Civ Mech Eng. 2021;21:1-25. https:// doi. org/ 10. 1007/ s43452-020-00151-w.
- 26. Eskandary K, Shishesaz M, Moradi S. Buckling analysis of com posite conical shells reinforced by agglomerated functionally graded carbon nanotube. Arch Civ Mech Eng. 2022. https:// doi.org/10.1007/S43452-022-00440-6.
- 27. M. Aryanfar, G. Rahmani-Sane, M.H. Masali, A. Mosallane jad.2024.Application of recovery techniques to enhance the resilience of power systems, in: Futur. Mod. Distrib. Networks Resil., Elsevier.
- 28. Jongvivatsakul P, Thongchom C, Mathuros A, Prasertsri T, Adamu M, Orasutthikul S, Lenwari A, Charainpanitkul T. Enhancing bonding behavior between carbon fiber-reinforced polymer plates and concrete using carbon nanotube reinforced epoxy composites. Case Stud Constr Mater. 2022;17: e01407. https://doi.org/10.1016/j.cscm.2022.e01407.
- 29. Shin WH, Kim S, Kim SY. Theoretical modeling for piezoresistive behavior of aligned carbon nanotube/polymer nanocomposites accounting for evolution of agglomerates morphology. Mater Today Commun. 2023;34: 104931. https://doi.org/10.1016/j.mtcomm.2022.104931.
- 30. Safaei B, Moradi-Dastjerdi R, Chu F. Effect of thermal gradient load on thermo-elastic vibrational behavior of sandwich plates reinforced by carbon nanotube agglomerations. Compos Struct. 2018;192:28-37. https://doi.org/10.1016/j.comp.struct. 2018. 02. 022.
- 31. Lal R, Rani R. On radially symmetric vibrations of circular sandwich plates of non-uniform thickness. Int J Mech Sci. 2015;99:29-39. https://doi.org/10.1016/J.IJMECSCI.2015.04.016.
- 32. Zhong R, Wang Q, Tang J, Shuai C, Qin B. Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates. Compos Struct. 2018;194:49-67. https://doi.org/10.1016/J.COMPSTRUCT.2018.03.104.
- 33. Dai T, Yang Y, Dai HL, Tang H, Lin ZY. Hygrothermal mechanical behaviors of a porous FG-CRC annular plate with variable thickness considering aggregation of CNTs. Compos Struct. 2019;215:198-213. https://doi.org/10.1016/J.COMP.STRUCT. 2019.02.061.
- 34. Lal R, Saini R. On radially symmetric vibrations of functionally graded non-uniform circular plate including non-linear temperature rise. Eur J Mech - A/Solids. 2019;77: 103796. https://doi.org/10.1016/J.EUROMECHSOL.2019.103796.
- 35. Khoddami Maraghi Z, Amir S, Arshid E. On the natural frequencies of smart circular plates with magneto-rheological fluid core embedded between magneto-strictive patches on Kerrelastic substance. Mech Based Des Struct Mach. 2022. https://doi.org/10.1080/15397734.2022.2156885.
- 36. Arshid E, Amir S, Loghman A. Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT. Int J Mech Sci. 2020;180: 105656. https://doi.org/10.1016/j.ijmecsci.2020.105656.
- 37. Lianngenga R, Singh SS. Symmetric and anti-symmetric vibrations in micropolar thermo-elastic materials plate with voids. Appl Math Model. 2019;76:856-66. https://doi.org/10.1016/J. APM. 2019.07.012.
- 38. Jena SK, Chakraverty S, Mahesh V, Harursampath D. Wavelet based techniques for Hygro-Magneto-Thermo vibration of nonlocalstrain gradient nanobeam-resting on Winkler-Pasternak elastic foundation. Eng Anal Bound Elem. 2022;140:494-506. https://doi.org/10.1016/j.enganabound.2022.04.037.
- 39. Wu D, Su J, Hua H. Effects of circular plates on forced vibra tion of orthogonally stiffened cylindrical shell in wavenumber frequency domain. Ocean Eng. 2023;268: 113439. https:// doi.org/10.1016/J.OCEANENG.2022.113439.
- 40. Dai Z, Tang H, Wu S, Habibi M, Moradi Z, Ali HE. Nonlinear consecutive dynamic instabilities of thermally shocked composite circular plates on the softening elastic foundation. Thin-Walled Struct. 2023;186: 110645. https://doi.org/10.1016/J.TWS.2023.110645.
- 41. Zenkour AM, El-Shahrany HD. Nonlinear hygrothermal effects on the vibrations of a magnetostrictive viscoelastic laminated sandwich plate resting on an elastic medium. Arch Civ Mec Eng. 2021. https://doi.org/10.1007/s43452-021-00230-6.
- 42. Zhang C, Wang L, Eyvazian A, Khan A, Sebaey TA, Farouk N. Analytical study of the damping vibration behavior of the metal foam nanocomposite plates reinforced with graphene oxide pow ders in thermal environments. Arc Civ Mech Eng. 2021. https://doi.org/10.1007/S43452-021-00269-5.
- 43. Ghorbanpour-Arani AA, Maraghi ZK, Arani AG. The frequency response of intelligent composite sandwich plate under biaxial in plane forces. J Solid Mech. 2023;1(1):1. https://doi.org/10.22034/JSM.2020.1895607.1563.
- 44. Rahimighazvini H, Khashroum Z, Bahrami M. Milad Hadizadeh Masali, Power electronics anomaly detection and diagnosis with machine learning and deep learning methods: A survey. Int J Sci Res Arch. 2024;11:730-9. https://doi.org/10.30574/ijsra.2024.11.2.0428.
- 45. Mindlin RD. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech. 1951;18:31-38.
- 46. Zavari S, Kaveh A, Babaei H, Arshid E, Dimitri R, Tornabene F. A quasi-3D hyperbolic formulation for the buckling study of metal foam microplates layered with graphene nanoplatelets-embedded nanocomposite patches with temperature fluctuations. Compos Struct. 2024. https://doi.org/10.1016/j.compstruct.2024.117876.
- 47. Tornabene F, Fantuzzi N, Bacciocchi M. Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes. Compos Part B Eng. 2017;115:449-76. https://doi.org/10.1016/j.compositesb.2016.07.011.
- 48. Kiarasi F, Babaei M, Mollaei S, Mohammadi M, Asemi K. Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets. Adv Nano Res. 2021;11:380. https://doi.org/10.12989/ANR.2021.11.4.361.
- 49. Yousefi AH, Memarzadeh P, Afshari H, Hosseini SJ. Agglomera tion effects on free vibration characteristics of three-phase CNT/ polymer/fiber laminated truncated conical shells. Thin-Walled Struct. 2020;157: 107077. https://doi. org/10.1016/j.tws.2020. 07077.
- 50. Arshid E, Amir S, Loghman A, Civalek Ö. Aerodynamic stability and free vibration of fgp-reinforced nano-fillers annular sector microplates exposed to supersonic flow. Thin-Walled Struct. 2024. https://doi.org/10.1016/j.tws.2024.111610.
- 51. Malik M, Das D. Study on free vibration behavior of rotating bidirectional functionally graded nano-beams based on Eringen’s nonlocal theory. Proc Inst Mech Eng Part L J Mater Des Appl. 2020. https://doi.org/10.1177/1464420720929375.
- 52. Dong YH, Zhu B, Wang Y, Li YH, Yang J. Nonlinear free vibra tion of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load. J Sound Vib. 2018;437:79-96. https://doi.org/10.1016/j.jsv.2018.08.036.
- 53. Ferreira AJM, Viola E, Tornabene F, Fantuzzi N, Zenkour AM. Analysis of sandwich plates by generalized differential quadrature method. Math Probl Eng. 2013;2013:1–12. https:// doi.org/10.1155/2013/964367.
- 54. Setoodeh AR, Shojaee M, Malekzadeh P. Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core. Compos Part B Eng. 2019;165:798-822. https://doi.org/10.1016/j.compositesb.2019.01.022.
- 55. Arshid E, Amir S, Loghman A. On the vibrations of FG GNPs RPN annular plates with piezoelectric/metallic coatings on Kerr elastic substrate considering size dependency and surface stress effects. Acta Mech. 2023. https://doi.org/10.1007/ s00707-023-03593-4.
- 56. Liew KM, Wang CM, Xiang Y, Kitipornchai S. Vibration of Mindlin Plates: Programming the p-Version Ritz Method. Oxford: Elsevier Science; 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0f14387-c242-49d9-a047-db40722321d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.