PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The evolution of arc magmatism related to Palaeotethys in the west of Salmas, north of the Sanandaj-Sirjan Zone, Iran

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Mingol-Mamakan gabbroic-appinitic intrusions are located in northwestern part of Iran and belong to the Sanandaj–Sirjan zone (SSZ). These intrusions have had a significant impact on evolution of the northwestern part of the SSZ during Upper Carboniferous. The rocks typically include layered and massive gabbros-gabbrodiorites. The age of layered gabbros is 303-300 Ma and they mainly consist of leuco-gabbro, mezzo-gabbro, melano-gabbro, anorthosite, and hornblendite (appinite) with gradational or sharp bedding contacts alternatively. Layered gabbros with 314-322 Ma are mostly composed of leuco-gabbro, mezzo-gabbro, melano-gabbro, and hornblendite. Most of these samples are appinite in composition. The intrusions show no obvious deformation. Therefore, mineral composition changes in the rocks have been controlled by crystallization processes, such as fractionation in the magma chamber. Our investigations indicate that different rock types with tholeiitic magma series are probably derived from partial melting of spinel lherzolite upper mantle co-genetic source. Geochemical information and dating from the Mingol-Mamakan intrusive rocks reveal that the intrusions were formed of subduction-related immature or sub-mature island arc tholeiitic basalt which is enriched in Al2O3, FeO, Sr and depleted in K and Nb. Subsequently, primary tholeiitic arc basalt magma underwent fractional crystallization to form intrusive rocks at the lower crust, relatively in high pressures conditions. Geochemical modeling based on the partition coefficient of elements in minerals indicates that trace elements concentrations (large-ion lithophile elements, LILEs, high field strength elements, HFSE, and rare earth elements, REEs) in the Mingol-Mamakan intrusions throughout the crystallization were controlled by variable amounts of common minerals such as amphibole, clinopyroxene (for all trace elements) plagioclase (only for LILE) and probably spinel in the source rock (only for HFSE). Moreover, elements of first transition series of periodic table mainly controlled by orthopyroxene, olivine and possibly by clinopyroxene and amphibole in much smaller amounts.
Rocznik
Strony
124--137
Opis fizyczny
Bibliogr. 51 poz., rys., wykr.
Twórcy
autor
  • University of Urmia, Department of Geology, 57153-165 Urmia, Islamic Republic of Iran
Bibliografia
  • 1. Agard, P., Omrani, J., Jolivert, L., Mouthereau, F., 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94: 401-419.
  • 2. Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B., Wortel, R., 2011. Zagros orogeny: a subduction-dominated process. Mineralogical Magazine, 148: 692-725.
  • 3. Alavi, M., 1994. Tectonic of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229: 211-238.
  • 4. Alavi-Naini, M., 1972. Etude geologique de la region de Djam. Geological Survey of Iran, Tehran, I. R. Iran. Report no. 23.
  • 5. Arculus, R.J., Wills, K.J.A., 1980. The petrology of plutonic blocks and inclusions from the Lesser Antilles Island Arc. Journal of Petrology, 21: 743-799.
  • 6. Asadpour, M., 2012. Petrology and Geochemistry of Ultramafic Rocks to Medium Rocks in the Ghoushchi Region (Orumieh) (in Persian). Ph.D. thesis, University of Shahid-Beheshti, Tehran, Iran.
  • 7. Asadpour, M., Pourmoafi, S.M., Heuss, H., 2013a. New evidence of the Precambrian and Paleozoic magmatism in the Gharabagh massive, Northwest Iran (in Persian). Scientific Quartly Journal, Geosciences, I. R. Iran, 23: 123-149.
  • 8. Asadpour, M., Pourmoafi, S.M., Heuss, H., 2013b. Geochemistry, petrology and U-Pb geochronology of Ghazan mafic-ultramafic intrusion, NW Iran (in Persian). Petrology, Isfahan, I. R. Iran, 4: 1-16.
  • 9. Bacon, C.R., Sisson, T.W., Mazdab, F.K., 2007. Young cumulate complex beneath Veniamin of caldera, Aleutian arc, dated by zircon in erupted plutonic blocks. Geology, 35: 491-494.
  • 10. Ballato, P., Uba, C.E., Landgraf, A., Strecker, M.R., Sudo, M., Stockli, D., Friedrich, A., Tabatabaei, S.H., 2011. Arabia-Eurasia continental collision: insights from late Tertiary foreland basin evolution in the Alborz Mountains, northern Iran. GSA Bulletin, 123: 106-131.
  • 11. Beard, J.S., Borgia, A., 1989. Temporal variation of mineralogy and petrology in cognate gabbroic enclaves at Arenal volcano, Costa Rica. Contributions to Mineralogy and Petrology, 103: 110-122.
  • 12. Berberian, M., King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18: 210-265.
  • 13. Berberian, M., 1995. Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics, 241: 193-224.
  • 14. Best, G., 2003. Igneous and Metamorphic Petrology. Wiley-Blackwell.
  • 15. Claeson, D.T., Meurer, W.P., 2004. Fractional crystallization of hydrous basaltic “arc-type” magmas and the formation of amphibole-bearing gabbroic cumulates. Contributions to Mineralogy and Petrology, 147: 288-304.
  • 16. Conrad, W.K., Kay, R.W., 1984. Ultramafic and mafic inclusions from Adak Island: crystallization history, and implications for the nature of primary magmas and crustal evolution in the Aleutian Arc. Journal of Petrology, 25: 88-125.
  • 17. Dercourt, J., Zonenshain, L.P., Ricou, L.-E., Kazmin, V.G., Lepichon, X., Knipper, A.L., Grandjacquet, C., Sbortshikov, I.M., Geyssant, J., Lepvrier, C., Pechersky, D.H., Boulin, J., Sibuet, J.-C., Savostin, L.A., Sorokhtin, O., Westphal, M., Bazhenov, M.L., Lauer, J.P., Biju-Duval, B., 1986. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics, 123: 241-315.
  • 18. Ersoy, Y., Helvaci, C., 2010. FC-AFC-FCA and mixing modeler: a Microsofts Excel and spread sheet program for modeling geochemical differentiation of magma by crystal fractionation, crustal assimilation and mixing. Computer and Geosciences, 36: 383-390.
  • 19. Fazlnia, A., Alizade, A., 2013. Petrology and geochemistry of the Mamakan gabbroic intrusions, Urumieh (Urmia), Iran: magmatic development of an intra-oceanic arc. Periodico di Mineralogia, 82: 263-290.
  • 20. Fortey, N.J., Cooper, A.H., Henney, P.J., Colman, T., Nancarrow, P.H.A., 1994. Appinitic in-rusions in the English Lake Disctrict. Mineralogy and Petrology, 51: 355-375.
  • 21. Ghaemi, J., 2004. Geological Map of Serow (1:100,000). Geological Survey of Iran, Tehran, Iran.
  • 22. Gill, R., 2010. Igneous Rocks and Processes: a Practical Guide. Wiley-Blackwell.
  • 23. Grove, T., Parman, S., Bowring, S., Price, R., Baker, M., 2002. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contributions to Mineralogy and Petrology, 142: 375-396.
  • 24. Grove, T.L., Baker, M.B., Price, R.C., Parman, S.W., Elkins- Tanton, L.T., Chatterjee, N., Muntener, O., 2005. Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich manile melts. Contributions to Mineralogy and Petrology, 148: 542-565.
  • 25. Haghipour, A., Aghanabati, A., 1976. Geological Map of Serow (1:250,000). Geological Survey of Iran, Tehran, Iran.
  • 26. Ildefonse, B., Blackman, D.K., John, B.E., Ohara, Y., Miller, D.J., MacLeod, C.J., Party, I.O.D.P.E.S., 2007. Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology, 35: 623-626.
  • 27. Keskin, M., 2002. FC-Modeler: a Microsoft® Excel© spreadsheet program for modeling Rayleigh fraciionation vectors in closed magmatic systems. Computers and Geosciences, 28: 919-928.
  • 28. Keskin, M., 2005. Domal Uplift and Volcanism in a Collision Zone without a Mantle Plume: Evidence from Eastern Anatolia. www.MantlePlumes.org
  • 29. Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist, 68: 277-279.
  • 30. Lesnov, F.P., Khlestov, V.V., Gal'versen, V.G., Sergeev, S.A., 2015. Polygenesis of mafic-ultramafic complexes: isotope-geochronological and geochemical evidence from zircons of the Berezovka massif rocks (Sakhalin Island). Russian Geology and Geophysics, 56: 1035-1054.
  • 31. Mohajjel, M., Fergusson, C.L., 2014. Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. International Geology Review, 56: 263-287.
  • 32. Mohajjel, M., Fergusson, C.L., Sahandi, M.R., 2003. Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, Western Iran. Journal of Asian Earth Sciences, 21: 397-412.
  • 33. Monsef, I., Rahgoshay, M., Mohajjel, M., Shafaii Moghadam, H., 2010. Peridotites from the Khoy ophiolite complex, NW Iran: evidences of mantle dynamics in a Supra-Subduction-zone context. Journal of Asian Earth Sciences, 38: 105-120.
  • 34. Moore, G., Carmichael, I.S.E., 1998. The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contributions to Mineralogy and Petrology, 130: 304-319.
  • 35. Mouthereau, F., Lacombe, O., Vergés, J., 2012. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532-535: 27-60.
  • 36. Müntener, O., Kelemen, P.B., Grove, T.L., 2001. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contributions to Mineralogy and Petrology, 141: 643-658.
  • 37. Murphy, J.B., 2013. Appinite suites: a record of the role of water in the genesis, transport, emplacement and crystallization of magma. Earth-Science Review, 119: 35-59.
  • 38. Mysen, B.O., 1977. The solubilty of H2O and CO2 under predicted magma genesis conditions and some petrological and geophysical implications. Reviews of Geophysics 15: 351-361.
  • 39. Mysen, B.O., 1988. Structure and Properties of Silicate Melts. Elsevier. Nabavi, M.H., 1976. Principle of Iran Geology. Geological Survey of Iran.
  • 40. Paul, A., Hatzfeid, D., Kaviani, A., Tatar, M., Pequegnat, C., 2010.
  • 41. Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran). Geological Society Special Publications, 330: 5-18.
  • 42. Pearce, J.A., Baker, P.E., Harvey, P.K., Luff, I.W., 1995. Geochemical evidence for subduction fluxes, manile melting and fractional crystallization beneath the South Sandwich-Island Arc. Journal of Petrology, 36: 1073-1109.
  • 43. Raymond, L.A., 2007. Peirology: the Study of Igneous, Sedimentary and Metamorphic Rocks. McGraw Hill.
  • 44. Sepahi, A.A., Borzoei, K., Salami, S., 2013. Mineral chemistry and thermobarometry of plutonic, metamorphic and anatectic rocks from the Tueyserkan area (Hamedan, Iran). Geological Quarterly, 57 (3): 515-526.
  • 45. Shafaii Moghadam, H., Li, X.-H., Ling, X.-X., Stern, R.J., Santos, J.F., Meinhold, G., Ghorbani, G., Shahabi, S., 2015. Petrogenesis and tectonic implications of Late Carboniferous A-type granites and gabbronorites in NW Iran: geochronological and geochemical constraints. Lithos, 212-215: 266-279.
  • 46. Shaw, D.M., 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta, 34: 237-243.
  • 47. Stampfli, G.M., Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196: 17-33.
  • 48. Stöcklin, J., 1968. Structural history and tectonics of Iran: a review. AAPG Bulletin, 52: 1229-1258.
  • 49. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publications, 42: 313-345.
  • 50. Wright, A.E., Bowes, D.R., 1979. Geochemistry of the appinite suites. Geological Society Special Publications, 8: 699-704.
  • 51. Yoder, H.S., Tilley, C.E., 1962. Origin of basaltic magma: an experimental study of natural and synthetic rock systems. Journal of Petrology, 3: 342-532.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0ecfa24-f19f-4eec-b02a-80df4ff824d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.