PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exhaust system piping made by hydroforming: relations between stresses, microstructure, mechanical properties and surface

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The subject of research is car exhaust system piping made of chromium–nickel steel of grade AISI304L with a unique, complex shape that was obtained by hydroforming technology. The purpose of the research was to determine the relation between the microstructure features, surface condition, hardness and the stresses on the external surface as determined by the sin2ψ X-ray method. We found that the stresses were tensile and correlated with the steel hardness, i.e. they were greater where the hardness was higher. Moreover, longitudinal stresses showed a relationship with pipe wall thickness, while circumferential stresses did so only partially. According to our data, the greatest value of stress determined in the pipe amounted to 290 MPa, and was close to the yield point of the strain hardened 304L steel. As depicted via XRD and SEM examination, the pipe stress level and hardness were influenced by the transition γ→α’. Furthermore, in the region of higher stress and hardness, the amount of martensite was 10 vol.%. We also noted that the pipe’s outer surface when subjected to friction against the die shows lesser roughness compared to its inner surface upon exposure to water under pressure.
Rocznik
Strony
648--658
Opis fizyczny
Bibliogr. 32 poz., fot., rys., wykr.
Twórcy
  • Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Czestochowa, Poland
  • Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Czestochowa, Poland
Bibliografia
  • [1] Gronostajski Z, Pater Z, Madej L, Gontarz A, Lisiecki L, Lukaszek-Solek A, Luksza J, Mróz S, Muskalski Z, Muzykiewicz W, Pietrzyk M, Śliwa RE, Tomczak J, Wiewiórowska S, Winiarski G, Zasadziński J, Ziólkiewicz S. Recent development trends in metal forming. Archiv Civ Mech Eng. 2019;19:898–941. https ://doi.org/10.1016/j.acme.2019.04.005.
  • [2] Koç M (Ed.), Hydroforming for Advanced Manufacturing, Wood-head Publishing Limited, England, and CRC Press, USA, 2008.
  • [3] Bell C, Corney J, Zuelli N, Savings D. A state of the art review of hydroforming technology. Its applications, research areas, history, and future in manufacturing. Int J Mater Form. 2019. https ://doi.org/10.1007/s1228 9-019-01507 -1.
  • [4] Koç M. An overall review of tube hydroforming (THF) technology. J Mater Process Tech. 2001;108:384–93. https ://doi.org/10.1016/S0924 -0136(00)00830 -X.
  • [5] Lang LH, Wang ZR, Kang DC, Yuan SJ, Zhang SH, Danckert J, Nielsen KB. Hydroforming highlights: sheet hydroforming and tube hydroforming. J Mater Process Tech. 2004;151(1–3):165–77. https ://doi.org/10.1016/j.jmatp rotec .2004.04.032.
  • [6] Kocańda A, Sadłowska H. Automotive component development by means of hydroforming. Archiv Civ Mech Eng. 2008;8(3):55–69. https ://doi.org/10.1016/S1644 -9665(12)60163 -0.
  • [7] Alaswad A, Benyounis KY, Olabi AG. Tube hydroforming process: a reference guide. Mater Des. 2012;33:328–39. https ://doi.org/10.1016/j.matde s.2011.07.052.
  • [8] Tolazzi M. Hydroforming applications in automotive: a review. Int J Mater Form. 2010;3:307–10. https ://doi.org/10.1007/s12289-010-0768-2.
  • [9] Lihui L, Tao L, Dongyang A, Cailou C, Danckert J. Investigation into hydromechanical deep drawing of aluminium alloy-Complicated components in aircraft manufacturing. Mater Sci Eng A. 2009;499(1–2):320–4. https ://doi.org/10.1016/j.msea.2007.11.126.
  • [10] Chałupczak J, Miłek T. Hydromechanical expansion of oblique fitting from pipes. Rudy i Metale Nieżelazne. 2006;51(11):654–9 ((in Polish)).
  • [11] Miłek T. The wall thickness distributions in longitudinal sections hydromechanically bulged axisymmetric components made from cooper cross joints. J Achiev Mater Manuf Eng 2014;65:20–25. jamme.acmsse.h2.pl/vol65_1/6513.
  • [12] Cheng DM, Teng BG, Guo B, Yuan SJ. Thickness distribution of hydroformed Y-shape tube. Mater Sci Eng A. 2009;499(1–2):36–9. https ://doi.org/10.1016/j.msea.2007.09.100.
  • [13] Morphy G. Pressure-sequence and high pressure hydroforming: Knowing the processes can mean boosting profits. Tube Pipe J September/October 1998 (thefabricator.com, February 2001).
  • [14] Nico L, Dinesh KR, Rahul V, Manikandan G, Arunansu H. Tube hydroforming in automotive applications, Tata Steel, (tatasteeleurope.com 28.01.2020).
  • [15] Mun-Young L, Sung-Man S, Chang-Young K, Sang-Yong L. Study in the hydroforming process for automobile radiator support members. J Mater Process Tech. 2002;2002:115–20. https ://doi.org/10.1016/S0924 -0136(02)00749 -5.
  • [16] Elie-dit-cosaque X, Said CM, Naceur H, Gakwaya A. Analysis and design of hydroformed thin-walled tubes using enhanced one-step method. Int J Adv Manuf Tech. 2012;59:507–20. https://doi.org/10.1007/s0017 0-011-3539-4.
  • [17] Thanakijkasem P, Pattaranqkun A, Mahabunphachai S, Uthaisan-qsuk V, Chutima S. Comparative study of finite element analysis in tube hydroforming of stainless steel 304. Int J Automot Tech. 2015;16:611–7. https ://doi.org/10.1007/s1223 9-015-0062-x.
  • [18] Bahman K. Trends for stainless steel tube in automotive applications. Tube Pipe J. September 13, 2005 (thefabricator.com).
  • [19] Gronostajski Z, Kuziak R. Metallurgical, technological and functional foundations of advanced high-strength steels for the automotive industry. Works of the Institute of Ferrous Metallurgy, pp 22–26 (2010) (in Polish).
  • [20] Wróbel-Knysak A, Kucharska B, Nitkiewicz Z, Lacki P. The sus-ceptibility of AlSi coating to deep drawing (in Polish). Hutnik Wiadomości Hutnicze. 2012;79(2):943–5.
  • [21] Kucharska B, Wróbel A, Kulej E, Nitkiewicz Z. The X-ray measurement of the thermal expansibility of Al–Si alloy in the form of cast and a protective coating on steel. Sol St Phen. 2010;163:286–90. https ://doi.org/10.4028/www.scien tific .net/SSP.163.286.
  • [22] Ikpe AE, Orhorhoro EK, Gobir A. Engineering material selection for automotive exhaust systems using CES software. IJET 2017;3(2):50–60. https ://doi.org/10.19072 /ijet.28284 7.
  • [23] Xianfeng C, Zhongqi Y, Bo H, Shuhui L, Zhongqin L. A theoretical and experimental study on forming limit diagram for a seamed tube hydroforming. J Mater Process Tech. 2011;211(12):2012–21. https ://doi.org/10.1016/j.jmatp rotec .2011.06.023.
  • [24] ISSF International Stainless Steels Forum. Stainless Steel Consumption Forecast, October 2017, (http://www.worldstainless.org/statistics 12.09.2019).
  • [25] Angel T. Formation of martensite in austenitic stainless steels: Effect of deformation, temperature and composition. J Iron Steel I. 1954;177:165–74.
  • [26] Das A, Chakraborti PC, Tarafder S, Bhadeshia HKDH. Analysis of deformation induced martensitic transformation in stainless steels. Mater Sci Tech. 2011;27(1):366–70. https ://doi.org/10.1179/02670 8310X 12668 41553 4008.
  • [27] Blicharski M, Gorczyca S. Structural inhomogeneity of deformed austenitic stainless steel. Met Sci. 1978;23:303–12.
  • [28] Noyan C, Cohen JB. Residual stress. New York: Springer Science and Business Media; 1987.
  • [29] Kucharska B. Identification of surface stress in the exhaust system pipe made by hydroforming technology based on diffractometric measurements. Eksploat Niezawodn 2019;21(4): 562–566. https://doi.org/10.17531 /ein.2019.4.4.
  • [30] Wyckoff RWG, Cubic closed packed ccp structure, Crystal Structures 1 (1963) 7–83, Crystallographic Open Database (COD) #90-900-8470.
  • [31] Skrzypek SJ, Baczmański A. Progress in X-ray diffraction of residual macrostresses determination related to surface layer gradients and anisotropy. Adv X Ray Anal. 2001;44:134–45.
  • [32] Precision Automotive Service, Exhaust system, (precisionauto-mobileservice.com, 25.09.2019).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0ec23c8-2dc1-4890-8738-f2ba69aeeb8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.