Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the problem of natural vibration of a two-stage hydraulic cylinder subjected to Euler compression load. The considered hydraulic cylinder is freely supported at both of its ends. The linear vibration problem of the telescopic hydraulic cylinder is based on the kinetic stability criterion using Hamilton’s principle and the Bernoulli-Euler theory. The stiffness of the guide and sealing elements between successive stages of the hydraulic cylinder were considered in this paper. These stiffnesses were modelled using translational and rotational springs. The effects of cylinder wall thickness, piston rod diameter, and thickness of guiding and sealing elements on the natural vibration of the system were analysed. Results are presented in the form of characteristic curves on the plane load – natural frequency with different parameters characterizing the considered hydraulic cylinder.
Rocznik
Tom
Strony
70--81
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
- Department of Mechanics and Fundamentals of Machine Design Czestochowa University of Technology Czestochowa, Poland
autor
- Department of Mechanics and Fundamentals of Machine Design Czestochowa University of Technology Czestochowa, Poland
autor
- Department of Mechanics and Fundamentals of Machine Design Czestochowa University of Technology Czestochowa, Poland
Bibliografia
- [1] Tomski, L. (1977). Elastic carrying capacity of a hydraulic prop. Engineering Transactions, 25(20), 247-263.
- [2] Uzny, S. (2009). Free vibrations and stability of hydraulic cylinder fixed elasically on both ends. Proc. Appl. Math. Mech., 9, 303-304.
- [3] Tomski, L. (1979). Dynamika stojaków hydraulicznych obudów górniczych, Praca habilitacyjna, Nr 17, Częstochowa.
- [4] Uzny, S., & Kutrowski, Ł. (2018). The effect of the type of mounting on stability of a hydraulic telescopic cylinder. Machine Dynamics Research, 42(2), 53-60.
- [5] Uzny, S., & Kutrowski, Ł. (2018). Obciążalność rozsuniętego teleskopowego siłownika hydraulicznego przy uwzględnieniu wyboczenia oraz wytężenia materiału. Modelowanie Inżynierskie, 37(68), 125-131.
- [6] Narvydas, E. (2016). Buckling strength of hydraulic cylinders – and engineering approach and finite element analysis. Mechanika, 22(6), 474-477.
- [7] Gamez-Montero, P.J., Salazar E., Castilla R., Freire J., Khamashta M., & Codina E. (2009). Misalignment effects on the load capacity of a hydraulic cylinder. International Journal of Mechanical Sciences, 51(2), 105-113.
- [8] Ji, Zhou, Duanwei, Shi, Chengyun, Di, Yang, Zhang, & Xionghao, Cheng (2020). Buckling behavior of horizontal hydraulic cylinder articulated at both supports. International Journal of Structural Stability and Dynamics, 20(3), 2050033.
- [9] Zhang, X., Zhang, J., Cheng, M., Zheng, S., Xu, B., & Fang, Y. (2022). A design constraint for a double-acting telescopic hydraulic cylinder in a hydraulic erecting system. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(1),1-13.
- [10] Solazzi, L., & Buffoli, A. (2021). Fatigue design of hydraulic cylinder made of composite material. Composite Structures, 277, 114647.
- [11] Solazzi, L. (2022). Reliability evaluation of critical local buckling load on the thin walled cylindricall shell made of composite material. Composite Structures, 284, 115163.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0df77c5-78db-4f50-93cc-d6bc07b8fdac