PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent advances in hydrogen dual-fuel conversion of diesel engines: a literature review

Identyfikatory
Warianty tytułu
PL
Konwersja silników wysokoprężnych na współzasilanie wodorem: przegląd literatury
Języki publikacji
EN
Abstrakty
EN
This paper presents a comprehensive review of hydrogen internal combustion engines (H2ICEs) in the context of heavy transport vehicles, highlighting their potential as a sustainable alternative to traditional diesel engines. The study synthesizes current research, evaluating the environmental impact, technological developments, challenges, and economic viability of H2ICEs. Key findings demonstrate that hydrogen, as a clean energy carrier, significantly reduces greenhouse gas emissions and air pollutants. The adaptability of H2ICEs to existing diesel engine infrastructure offers a practical pathway for rapid implementation. However, challenges such as efficient hydrogen storage, distribution logistics, and infrastructure development remain substantial barriers. The paper also discusses the compliance of H2ICEs with emission regulations, emphasizing the reduction in nitrogen oxide emissions. The economic assessment underscores the need for cost-effective hydrogen production methods, particularly focusing on steam reforming for large-scale applications. The study concludes with recommendations for future research directions and policy implications, advocating for a balanced approach that combines technological innovation with environmental and economic considerations to facilitate the transition to a more sustainable heavy transport sector.
PL
W artykule przedstawiono obszerny przegląd rozwiązań zasilania silników spalinowych wodorem (HZICES), W szczególności W kontekście pojazdów ciężarowych, podkreślając ich potencjał jako zrównoważonej alternatywy dla tradycyjnych silników Diesla. W pracy skupiono się na ocenie wpływu na środowisko, rozwoju technologicznym i związanym z tym wyzwaniom oraz opłacalności ekonomicznej HZICEs. Wodór wykorzystywany jako paliwo silnikowe znacznie zredukuje emisję gazów cieplarnianych i zanieczyszczeń powietrza towarzyszących spalaniu oleju napędowego. Możliwość dostosowania istniejących silników Diesla do współspalania wodoru oferuje praktyczną ścieżkę do szybkiego i taniego wdrożenia, niemniej wyzwania takie jak efektywne przechowywanie wodoru, logistyka dystrybucji i rozwój infrastruktury nadal pozostają znaczącymi barierami w rozwoju. Zwrócono uwagę na potrzebę rozwoju nisko kosztowych metod wytwarzania wodoru i kierunki dalszych badań, łącząc innowacje technologiczne z aspektami środowiskowymi i ekonomicznymi w celu ułatwienia przejścia do bardziej zrównoważonego sektora transportu ciężkiego
Wydawca
Czasopismo
Rocznik
Tom
Strony
93--106
Opis fizyczny
Bibliogr. 98 poz., tab.
Twórcy
  • Politechnika Wrocławska
autor
  • Politechnika Wrocławska
  • Politechnika Wrocławska
  • Politechnika Wrocławska
Bibliografia
  • [1] Adnan R., Masjuki H., & Mahlia T. (2009). An experimental investigation of unmodified di diesel engine With hydrogen addition,. https ://doi.org/1 0. 1 109/iceenviron.2009.5398672
  • [2] Adnan R., Masjuki H., Mahlia T. (2009). An experimental investigation of unmodified di diesel engine with hydrogen addition. https://doi.org/10.1l09/iceenviron.2009.5398672
  • [3] Amirante R., Distaso E., Napolitano M., Tamburrano P., Iorio S., Sementa P., Reitz R (2017). Effects of lubricant oil on particulate emissions from port-Biel and direct-inj ection spark-ignition engines. International Journal of Engine Research, 18(5-6), 606-620. https://doi.org/10.1177/1468087417706602
  • [4]Arat H., Tang, B. & Ózaslan N. (2020). Sustainability analyses for hydrogen fuel cell electric vehicles. https://doi.org/ 10.5772/intechopen.90675
  • [5] Asiri A., Adeosun, W., Khan S., Alamry K Marwani H., Zakeeruddin S., Gratzel M. (2022). Solid-state synthesis of cdfe2o4 binary catalyst for potential application in renewable hydrogen fuel generation. Scientific Reports, 12(1). https://doi.org/10.1038/541598-022-04999-1
  • [6] Badwal, S., Giddey, S., & Munnings, C. (2012). Hydrogen production via solid electrolytic routes. Wiley Interdisciplinary Reviews Energy and Environment, 2(5), 473 -487. https://doi.org/10.1002/Wene.50
  • [7] Balat, M. (2007). Hydrogen in fueled systems and the significance of hydrogen in vehicular transportation. Energy Sources Part B Economics Planning and Policy, 2(1), 49-61. https://doi.org/10.1080/15567240500400911
  • [8] Benabid, F., Knight, J., Antonopoulos, G., & Russell, P. (2002). Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 298(5592), 399-402. https://doi.org/ 10.1126/science.1076408
  • [9] Boretti, A. (2011). Advantages of the direct injection of both diesel and hydrogen in dual fuel h2ice. International Journal of Hydrogen Energy, 36(15), 9312-9317. https://doi.org/10.1016/j.ijhydene.2011.05.037
  • [10] Boretti, A. (2021). Improving efficiency and power density of hydrogen engines of positive ignition single-fuel and compression ignition dual-fuel designs. https://doi.org/ 10.46720/t2020-caf-001 _
  • [11] Bromberg, L., Cohn, D., Rabinovich, A., & Heywood, J. (2001). Emissions reductions using hydrogen from plasmatron fuel converters. International Journal of Hydrogen Energy, 26(10), 1115-1121. https://doi.org/10.1016/50360-3l99(01)00049-0
  • [12] Cemat, A., Pana, C., Negurescu, N., Fuiorescu, D., Nutu, C., & Mirica, I. (2018). Experimental aspects of hydrogen use at diesel engine by diesel gas method. Thermal Science, 22(3), 1385-1394. https://doi.org/10.2298/tsci170314138c
  • [13] Chen, X., et al. (2021). "Advances in Hydrogen Storage Technologies: A Review of MOFs". Journal of Materials Chemistry.
  • [14] Chong, C., Wenham, S., Ji, J ., Mai, L., Wang, S., Hallam, B., & Li, H. (2018). Leds for the implementation of advanced hydrogenation using hydrogen charge-state control. International Journal of Photoenergy, 2018, 1-6. https://doi.org/1 0.1 155/201 8/243 9425
  • [15] Cioni, S., Balduzzi, F., Romani, L., Bianchini, A., & Ferrara, G. (2022). Fluid dynamic analysis of a cryogenic piston pump. Journal of Physics Conference Series, 2385(1), 012037. https://doi.org/10.1088/ 1742-6596/2385/1/012037
  • [16] Dallmann, T., DeMartini, S., Kirchstetter, T., Hemdon, S., Onasch, T., Wood, E., & Harley, R. (2012). On-road measurement of gas and particle phase pollutant emission factors for individual heavy-duty diesel trucks. Environmental Science & Technology, 46( 15), 8511-8518. https://doi.org/10.1021/es301936c
  • [17] Dallmann, T., Harley, R, & Kirchstetter, T. (2011). Effects of diesel particle filter retrofits and accelerated fleet turnover on drayage truck emissions at the port of oakland Environmental Science & Technology, 45(24), 10773-1 0779. https://doi.org/10.1021/es202609q '
  • [18] Dallmann, T., Onasch, T., Kirchstetter, T., Worton, D., Fortner, E., Hemdon, S., & Harley, R. (2014). Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer. Atmospheric Chemistry and Physics, 14(14), 7585-7599. https://doi.org/10.5194/acp—14- 7585-2014
  • [19] Dash, S. (2022). Hydrogen fuel for future mobility: challenges and future aspects. Sustainability, 14(14), 8285. https://doi.org/10.3390/su14l48285
  • [20] Dash, S. (2022). Hydrogen fuel for future mobility: challenges and future aspects. Sustainability, 14( 14), 8285. https://doi.org/10.3390/su14148285
  • [21] Delorme, A., Rousseau, A., Sharer, P., Pagerit, S., & Wallner, T. (2009). Evolution of hydrogen fueled vehicles compared to conventional vehicles from 2010 to 2045.. https://doi.org/10.4271/2009-01-1008
  • [22] Devarajan, Y., Beemkumar, N., Choubey, G., Vellaiyan, S., & Mehar, K. (2021). Renewable pathway and twin fueling approach on ignition analysis of a dual-fuelled compression ignition engine. Energy & Fuels, 35(12), 9930-9936. https://doi.org/10.1021/acs.energyfuels.0c04237
  • [23] Dimitrov, E., Fmon, B., Pantchev, S., Michaylov, P., & Peychev, M. (2018). A study of hydrogen fuel impact on compression ignition engine performance. Matec Web of Conferences, 234, 03001. https://doi.org/10.1051/matecconf/201823403001
  • [24] Distaso, E., Calo, G., Amirante, R., Palma, P., Mehl, M., Pelucchi, M., & Tamburrano, P. (2022). Highlighting the role of lubricant oil in the development of hydrogen internal combustion engines by means of a kinetic reaction model. Journal of Physics Conference Series, 2385(1), 012078. https://doi.org/10.1088/1742-6596/2385/1/012078
  • [25] Esfahani, E., Mon'na, A., Han, B., Nedelcu, I., Eijk, M., & Neville, A. (2017). Development of a novel in-situ technique for hydrogen uptake evaluation from a lubricated tribocontact. Tribology International, 113, 433-442. https://doi.org/10.1016/j.tn'boint.2017.01.019
  • [26] Fornasari, L., D'Agostino, S., & Braga, D. (2019). Supramolecular zwitterions based on a novel boronic acid—squarate dianion synthon. Crystengcomm, 21(20), 3186-3191. https://doi.org/10.1039/c9ce00367c
  • [27] Frey, H., Rouphail, N., & Zhai, H. (2008). Link-based emission factors for heavy-duty diesel trucks based on real- World data. Transportation Research Record Journal of the Transportation Research Board, 2058(1), 23-32. https://doi.org/10.3141/2058-04
  • [28] Gebretsadik, D., Hardell, J., Gabler, C., & Prakash, B. (2018). Tribological compatibility of some selected pb—free engine bearing materials with different engine oil formulations. Tribology Online, 13(3), 91-100. https://doi.org/10.2474/trol. 13.91
  • [29] Guo, P., Xu, J., Zhao, C., & Zhang, B. (2022). Study of hydrogen internal combustion engine vehicles based on the whole life cycle evaluation method. Trends in Renewable Energy, 8(1), 27-37 .https://doi.org/10.17737/tre.2022.8.1.00135
  • [30] Guo, Q., Luo, K, Li, D., Huang, C., & Qin, K. (2021). Effect of operating conditions on the performance of gas—1iquid mixture roots pumps. Energies, 14(17), 5361. https://doi.org/10.3390/en14175361
  • [31] Hamdan, M., Selim, M., Al-Omari, S., & Elnaj jar, E. (2015). Hydrogen supplement co-combustion with diesel in compression ignitiOn engine. Renewable Energy, 82, 54-60. https://doi.org/10.1016/j.renene.2014.08.019
  • [32] Hu, T., Teng, H., Luo, X., & Chen, B. (2015). Impact of fuel injection on dilution of engine crankcase oil for turbocharged gasoline direct-injection engines. Sae International Journal of Engines, 8(3), 1107-1116. https://doi.org/10.4271/2015-01-0967 -
  • [33] Hu, T., Teng, H., Luo, X., & Chen, B. (2015). Impact of fuel injection on dilution of engine crankcase oil for turbocharged gasoline direct-injection engines. Sae International Journal of Engines, 8(3), 1107-1116. https://doi.org/10.4271/2015-01-0967
  • [34] Huang, Y., Surawski, N., Zhuang, Y., Zhou, J., & Hong, G. (2021). Dual injection: an effective and efficient technology to use renewable fuels in spark ignition engines. Renewable and Sustainable Energy Reviews, 143, 110921. https://doi.org/10.1016/j.rser.2021.110921
  • [35] Jothi, S., Merzlikin, S., Croft, N., Andersson, J., & Brown, S. (2016). An investigation of micro-mechanisms in hydrogen induced cracking in nickel-based superalloy 718. Journal of Alloys and Compounds, 664, 664-681.https://doi.org/10.1016/j.ja11com.2016.01.033
  • [36] Kahraman, E., Ozcanli, S., & Ózerdem, B. (2007). An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine. International Journal of Hydrogen Energy, 32(12), 2066- 2072. https://doi.org/10.1016/j.ijhydene.2006.08.023
  • [37] Kalghatgi, G. (2017). Knock onset, knock intensity, superknock and preignition in spark ignition engines. International Journal of Engine Research, 19(1), 7-20. https://doi.org/10.1177/1468087417736430
  • [38] Kalmykov, K., Anikina, I., Kolbantseva, D., Trescheva, M., Treschev, D., Kalyutik, A., & Vladimirov, I. (2022). Use of heat pumps in the hydrogen production cycle at thermal power plants. Sustainability, 14(13), 7710. https://doi.org/10.3390/su14137710 _
  • [39] Karmakar, A., Chavan, H., J eong, S., & Cho, J. (2022). Mixed transition metal carbonate hydroxide-based nanostructured electrocatalysts for alkaline oxygen evolution: status and perspectives. Advanced Energy and Sustainability Research, 3(9). https://doi.org/10.1002/aesr.202200071
  • [40] Kazum, A., Attia, O., Mosa, A., & Adam, N. (2021). Investigation on the air-gas characteristics of air-hydrogen mixer designed for dual fiiel — engines. Eureka Physics and Engineering, (2), 66-77. https://doi.org/ 10.21303/2461-42622021001722
  • [41] Kneźević, V., Stazić, L., Orović, J., & Pavin, Z. (2022). Optimisation of reliability and maintenance plan of the high- pressure fuel pump system on marine engine. Polish Maritime Research, 29(4), 97-104. https://doi.org/ 10.247 8/pomr-2022-0047
  • [42] Kwon, J., Sharer, P., & Rousseau, A. (2006). Impacts of combining hydrogen ice with fuel cell system using psat..https://doi.org/10.4271/2006-01-0037
  • [43] Li, J., Gao, J., Tian, G., Ma, C., & Xing, S. (2021). An effective approach of dropping the backfire possibilities of a hydrogen-fuelled opposed rotary piston engine. Energy Science & Engineering, 9(8), 1061-1067. https://doi.org/10.l002/ese3.893
  • [44] Liu, J. (2022). Introduction of abnormal combustion in hydrogen internal combustion engines and the detection method. Trends in Renewable Energy, 8(1), 38-48. https://doi.org/10. 1773 7/tre.2022.8.1.00136
  • [45] Liu, J. (2022). Introduction of abnormal combustion in hydrogen internal combustion engines and the detection method Trends in Renewable Energy, 8(1), 38-48. https://doi.org/ 10.17 73 7/tre.2022.8.1.00136
  • [46] Liu, X., Ji, C., Gao, B., Wang, S., & Yang, J. (2014). A quasi-dimensional model for hydrogen-enriched gasoline engines with a new laminar flame speed expression. Energy Procedia, 61, 327-330. https://doi.5rg/10.1016/j.egypro.2014.11.1117
  • [47] Liu, X., Sma, A., Yip, H., Kook, S., Nian, Q., & Hawkes, E. (2020). Comparison of hydrogen port injection and direct injection (di) in a single-cylinder dual-fuel diesel engine. https://doi.org/10.14264/a1cd1dc
  • [48] Liu, Y., et al. (2022). "Metal Hydrides for Hydrogen Storage Applications: A Review". Advanced Functional Materials.
  • [49] Longwic, R., Woźniak, G., & Sander, P. (2020). Compression-ignition engine fuelled with diesel and hydrogen engine acceleration process. Combustion Engines, 180(1), 47-51. https://doi.org/10.19206/ce-2020-108
  • [50] Luo, Y. and Zhao, C. (2020). An overview of pre-ignition of hydrogen engine. Journal of Scientific Research and Reports, 1-7. https://doi.org/ 10.97 34/j srr/2020/v26i 1 0303 17
  • [51] Marchi, C., Hecht, E., Ekoto, I., Groth, K., LaFleur, C., Somerday, B., & James, C. (2017). Overview of the doe hydrogen safety, codes and standards program, part 3: advances in research and development to enhance the scientific basis for hydrogen regulations, codes and standards. International Journal of Hydrogen Energy, 42(11), 7263-7274.https://doi.org/10.1016/j.ijhydene.2016,07,014
  • [52] Medisetty, V., Kumar, R., Ahmadi, M., Vo, D., Ochoa, A., & Solanki, R. (2020). Overview on the current status of hydrogen energy research and development in india. Chemical Engineering & Technology, 43(4), 613-624. https://doi.org/10.1002/ceat.201900496
  • [53] Medisetty, V., Kumar, R., Ahmadi, M., Vo, D., Ochoa, A., & Solanki, R. (2020). Overview on the current status of hydrogen energy research and development in india. Chemical Engineering & Technology, 43(4), 613-624. https://doi.org/10.1002/ceat.201900496
  • [54] Miller, A., Stipe, C., Habjan, M., & Ahlstrand, G. (2007). Role of lubrication oil in particulate emissions from a hydrogen-powered internal combustion engine. Environmental Science & Technology, 41(19), 6828-6835. https://doi.org/10.1021/e5070999r
  • [55] Mochtar, A., Nomura, S., Mukasa, S., Toyota, H., & Kawamukai, K. (2017). Hydrogen production from n-dodecane using steam reforming in-liquid plasma method Journal of the Japan Institute of Energy, 96(3), 86-92. https://doi.org/10.3775/jie.96.86
  • [56] Monguchi, Y., Ida, T., Maejima, T., Yanase, T., Sawama, Y., Sasai, Y., & Sajiki, H. (2014). Palladium on carbon-catalyzed gentle and quantitative combustion of hydrogen at room temperature. Advanced Synthesis & Catalysis, 356(2-3), 313-318. https://doi.org/10.1002/adsc.201300710
  • [57] Mothe’, G., Castro, M., Sthel, M., Lima, G., Brasil, L., Campos, L., & Vargas, H. (2010). Detection of greenhouse gas precursors from diesel engines using electrochemical and photoacoustic sensors. Sensors, 10(11), 9726-9741. https://doi.org/ 10.3390/5101 109726
  • [58] Nutu, N., Pana, C., Negurescu, N., Cemat, A., Fuiorescu, D., & Mirica, I. (2019). A research on fuelling a truck diesel engine with hydrogen. E35 Web of Conferences, 112, 01011. https://doi.org/10.1051/e3sconf/201911201011
  • [59] Park, C., Park, W., Kim, Y., Choi, Y., & Lim, B. (2019). Effect of valve timing and excess air ratio on torque in hydrogen-fueled internal combustion engine for uav. Energies, 12(5), 771. https://doi.org/10.3390/en12050771
  • [60] Patterson, R and Harley, R. (2021). Effects of diesel engine emission controls on environmental equity and justice. Environmental Justice, 14(5), 360-371. https://doi.org/10.1089/env.2020.0078
  • [61] Pellow, M., Emmott, C., Barnhart, C., & Benson, S. (2015). Hydrogen or batteries for grid storage? a net Energy analysis. Energy & Environmental Science, 8(7), 1938-1952. https://doi.org/10.1039/c4ee04041d
  • [62] Pielecha, 1., Engehnann, D., Czerwinski, J., & Merkisz, J. (2022). Use of hydrogen fuel in drive systems of rail vehicles. Rail Vehicles, (1-2), 10-19. https://doi.org/10.53502/rai1-147725
  • [63] Pilavachi, P., Stephanidis, S., Pappas, V., & Afgan, N. (2009). Multi-criteria evaluation of hydrogen and natural gas fuelled power plant technologies. Applied Thermal Engineering, 29(11-12), 2228-2234. https://doi.org/10.1016/j.applthennaleng.2008.11.014
  • [64] Rahmani, R., Dolatabadi, N., & Rahnej at, H. (2023). Multiphysics performance assessment of hydrogen fuelled engines. International Journal of Engine Research, 24(9), 4169-4189. https://doi.org/10.1177/14680874231182211
  • [65] Ramsay, W., Fridell, E., & Michan, M. (2023). Maritime Energy Transition: Future Fuels and Future Emissions.Journal of Marine Science and Application. https://doi.org/10.1007/sl1804-023-00369-2
  • [66] Rashid, M. M., et al. (2020). "High-Pressure Hydrogen Storage Systems: A Review". International Journal of Hydrogen Energy.
  • [67] Ren, J., Tan, S., & Dong, L. (2012). The assessment of hydrogen energy systems for fuel cell vehicles using principal component analysis and cluster analysis. Isrn Chemical Engineering, 2012, 1-8. https://doi.org/10.5402/20 182/191308
  • [68] Renzis, E., Mariani, V., Bianchi, G., Falfari, S., & Cazzoli, G. (2022). Application of a one-dimensional fuel-oil dilution model coupled with an empirical droplet-to-film formation strategy for predicting in-cylinder oil effects in a direct injection engine. Journal of Physics Conference Series, 2385(1), 012063. https://doi.org/10.1088/1742- 6596/2385/1/012063
  • [69] Saravanan, N. and Nagarajan, G. (2009). Experimental investigation in optimizing the hydrogen fuel on a hydrogen diesel dual-fuel engine. Energy & Fuels, 23(5), 2646-2657. https://doi.org/10.1021/ef800962k
  • [70] Shudo, T. (2007). Improving thermal efficiency by reducing cooling losses in hydrogen combustion engines. International Journal of Hydrogen Energy, 32(17), 4285-4293. https://doi.org/10.1016/j.ijhydene.2007.06.002
  • [71] Sivabalakrishnan, R. and Chinnasamy, J. (2014). Study of knocking effect in compression ignition engine with hydrogen as a secondary fuel. Chinese Journal of Engineering, 2014,1-8. https://doi.org/ 10.1155/2014/102390
  • [72] Smith, J. K., et al. (2019). "Liquid Hydrogen Storage: An Analysis of Material and Infrastructure Requirements". Energy Reports. ,
  • [73] Soudagar, M., Khandal, S., Javed, S., Mokashi, I., Baig, M., Ismail, K., & Elfasakhany, A. (2021). Performance of common rail direct injection (crdi) engine using ceiba pentandra biodiesel and hydrogen fuel combination. Energies, 14(21), 7142. https://doi.org/10.3390/en14217142
  • [74] Su, Y., Lv, H., Zhou, W., & Zhang, C. (2021). Review of the hydrogen permeability of the liner material of type ivon-board hydrogen storage tank. World Electric Vehicle Journal, 12(3), 130. https://doi.org/10.3390/wevj12030130
  • [75] Suer, J., Traverso, M., & Ahrenhold, F. (2022). Sustainable transition of the primary steel production: carbon footprint studies of hot—rolled coil according to iso 14067. E3s Web of Conferences, 349, 07004. https://doi.org/10.105 l/e3sconf/202234907004
  • [76] Szwaja, S. (2020). Knock reduction measures in the gas fuelled internal combustion engine. Science & Technique, 19(4), 339-348. https://doi.org/10.21122/2227-1031-2020-19-4-339-348
  • [77] Tang, T., Ding, L., Yao, Z., Pan, H., & Hu, J. (2021). Synergistic electrocatalysts for alkaline hydrogen oxidation and evolution reactions. Advanced Functional Materials, 32(2). https://doi.org/10.1002/adfm202107479
  • [78] Tsai, H. and Tseng, C. (2010). Detecting solenoid valve deterioration in in-use electronic diesel fuel injection control systems. Sensors, 10(8), 7157-7169. https://doi.org/10.3390/s100807157
  • [79] Tutak, W., Grab-Rogaliński, K., & Jamrozik, A. (2020). Combustion and emission characteristics of a biodiesel-hydrogen dual-fuel engine. Applied Sciences, 10(3), 1082. https://doi.org/10.3390/app10031082
  • [80] Verhelst, S. (2014). Recent progress in the use of hydrogen as a fuel for internal combustion engines. International Journal of Hydrogen Energy, 39(2), 1071-1085. https://doi.org/10.1016/j.ijhydene.2013.10.102
  • [81] Verhelst, S. and Wallner, T. (2009). Hydrogen-fueled internal combustion engines. Progress in Energy and Combustion Science, 35(6), 490-527. https://doi.org/10.1016/j.pecs.2009.08.001
  • [82] Verhelst, S. and Wallner, T. (2009). Hydrogen-fueled internal combustion engines. Progress in Energy and Combustion Science, 35(6), 490-527. https://doi.org/10.1016/j.pecs.2009.08.001
  • [83] Verhelst, S., Demuynck, J., Sierens, R, & Huyskens, P. (2010). Impact of variable valve timing on power, emissions and backfire of a bi-fuel hydrogen/gasoline engine. International Journal of Hydrogen Energy, 35(9), 4399-4408. https://doi.org/10.1016/j.ijhydene.2010.02.022
  • [84] Verhelst, S., Demuynck, J., Sierens, R, & Huyskens, P. (2010). Impact of variable valve timing on power, emissions and backfire of a bi-fuel hydrogen/gasoline engine. International Journal of Hydrogen Energy, 35(9), 4399-4408. https://doi.org/10.1016/j.ijhydene.2010.02.022
  • [85] Vijayalakshmi, S., Chitragar, P., & Narayanappa, K. (2018). Effect of hydrogen addition on combustion and emissions performance of a high speed spark ignited engine at idle condition. Thermal Science, 22(3), 1405-1413. https://doi.org/10.2298/tsci1804071575
  • [86] Vyavhare, K., Bagi, S., Patel, M., & Aswath, P. (2019). Impact of diesel engine oil additives—soot interactions on physiochemical, oxidation, and wear characteristics of soot. Energy & Fuels, 33(5), 4515-4530. https://doi.org/10.1021/acs.energyfuels.8b03841
  • [87] Wang, W., Lyons, D., Clark, N., Gautam, M., & Norton, P. (2000). Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification. Environmental Science & Technology, 34(6), 933-939. https://doi.org/10.1021/es981329b
  • [88] Yamin, J. (2006). Comparative study using hydrogen and gasoline as fuels: combustion duration effect. International Journal ofEnergy Research, 30(14), 1175-1187. https://doi.org/10.1002/er. 1213
  • [89] Yang, Y., Li, G., & Wang, B. (2022). Development of standards for liquid hydrogen in china. Iop Conference Series "Earth and Environmental Science, 1011(1), 012001. https://doi.org/10.1088/1755-1315/101l/1/012001
  • [90] Yang, Z., Li, D., & Wang, L. (2018). Research on the hot surface ignition of hydrogen-air mixture under different influencing factors. International Journal of Energy Research, 42(12), 3966-3976. https:// doi.org/10.1002/er.4132
  • [91] Yan-mei, Y., Xu, H., Lin, L., Bao, W., Zhang, B., & Ai, B. (2020). Development of standards for hydrogen safety. E3s Web of Conferences, 194, 02013.https://doi.org/10.1051/e3sconf/202019402013
  • [92] Yousefi, M. and Donne, S. (2022). Experimental study for thermal methane cracking reaction to generate very pure hydrogen in small or medium scales by using regenerative reactor. Frontiers “in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.971383
  • [93] Yu, X., Zuo, X., Wu, H., Du, Y., Sun, Y., & Wang, Y. (2017). Study on combustion and emission characteristics of a combined injection engine with hydrogen direct injection. Energy & Fuels, 31(5), 5554-5560. https://doi.org/10.1021/acs.energyfuels.6b03300
  • [94] Yuan, S. (2023). Investment income analysis of automobile enterprises entering the commercial vehicles field of hydrogen fuel cell, 279-285. https://doi.org/ 10.2991/97 8-94-6463-056-5__40
  • [95] Zaika, Y. [and Kostikova, E. (2014). Computer simulation of hydrogen thermodesorption. Advances in Materials Science and Applications, 3(3), 120-129. https://doi.org/10.5963/arnsa0303003
  • [96] Zang, R and Yao, C. (2015). Numerical study of combustion and emission characteristics of a diesel/methanol dual fuel (dmdf) engine. Energy & Fuels, 29(6), 3963-3971.https://doi.org/10.102l/acs.energyfuels.5b00644
  • [97] Zhang, W., Zhang, H., Zhang, M., Zhenqiang, F., Zilei, Y., & Yuehao, G. (2017). Scr tail gas treatment of marine diesel engine based on optimization of catalyst structure. https://doi.org/10.25236/matmce2017.17
  • [98] Zhao, G., Chen, J ., Sun, W., & Pan, H. (2021). Non-platinum group metal electrocatalysts toward efficient hydrogen oxidation reaction. Advanced Functional Materials, 31(20). https://doi.org/10.1002/adfm.202010633
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0deb6b6-fca2-48f3-bab6-e3223d3bb048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.