PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A family of generalized gamma convoluted variables

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper consists of three parts: in the first part, we describe a family of generalized gamma convoluted (abbreviated as GGC) variables. In the second part, we use this description to prove that several r.v.’s, related to the length of excursions away from 0 for a recurrent linear diffusion on R+, are GGC. Finally, in the third part, we apply our results to the case of Bessel processes with dimension d = 2(1 − α), where 0 < d < 2 or 0 < α< 1.
Rocznik
Strony
181--204
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Institut Elie Cartan, Université Henri Poincaré, B.P. 239, 54506 Vandoeuvre les Nancy Cedex
autor
  • Institut Elie Cartan, Université Henri Poincaré, B.P. 239, 54506 Vandoeuvre les Nancy Cedex
autor
  • Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris VI et VII, 4 place Jussieu, Case 188, F-75252 Paris Cedex 05
Bibliografia
  • [1] J. Bertoin, Subordinators: Examples and Applications, in: Ecole d’Eté de Saint-Flour, Lecture Notes in Math. No 1717, Springer, 1997.
  • [2] J. Bertoin, T. Fujita, B. Roynette and M. Yor, On a particular class of selfdecomposable random variables: the duration of Bessel excursions straddling independent exponential times, Probab. Math. Statist. 26 (2) (2006), pp. 315-366.
  • [3] L. Bondesson, Generalized Gamma Convolutions and Related Classes of Distributions and Densities, Lecture Notes in Statist. 76, Springer, 1992.
  • [4] L. Chaumont and M. Yor, Exercises in Probability. A Guided Tour from Measure Theory to Random Processes, via Conditioning, Camb. Ser. Stat. Probab. Math. 13 (2003).
  • [5] C. Donati-Martin, B. Roynette, P. Vallois and M. Yor, On constants related to the choice of the local time at 0; and the corresponding Itô measure for Bessel processes with dimension d = 2(1-α); 0 <α< 1, Studia Sci. Math. Hungar. 45 (2008), pp. 207-221.
  • [6] L. F. James, B. Roynette and M. Yor, Generalized gamma convolutions, Dirichlet means, Thorin measures with explicit examples, Probability Surveys 5 (2008), pp. 346-415.
  • [7] F. B. Knight, Characterization of the Lévy measure of inverse local times of gap diffusions, Seminar on Stochastic Processes 22, Birkhäuser, 1981, pp. 53-78.
  • [8] S. Kotani and S. Watanabe, Krein’s spectral theory of strings and general diffusion processes, in: Functional Analysis in Markov Processes, M. Fukushima (Ed.), Lecture Notes in Math. No 923, Springer, 1982, pp. 235-259.
  • [9] G. K. Kristiansen, A proof of Steutel’s conjecture, Ann. Probab. 22 (1994), pp. 442-452.
  • [10] N. N. Lebedev, Special Functions and Their Applications, translated and edited by R. A. Silverman, Dover Publications Inc., 1965.
  • [11] P. Salminen, P. Vallois and M. Yor, On the excursion theory for linear diffusions, Japan J. Math. 2 (2007), pp. 97-127.
  • [12] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton 1946.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0dde3c0-7955-4103-9e17-4df2a7741f9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.