Identyfikatory
Warianty tytułu
Histereza w półsztywnych połączeniach stalowych
Języki publikacji
Abstrakty
In this paper the dynamic behaviour of a completely rigid steel column with a mass on the top, loaded by exponentially increasing cycling force is investigated. The joint at the fixed end of the column is modelled with a semi-rigid rotational spring; its non-linear characteristic is theoretically represented by a Preisach hysteresis model. In the solution of the non-linear dynamic equation of the motion the fix-point technique is inserted into the time marching iteration. The results are plotted in figures.
W artykule opisano badania reakcji sztywnej, stalowej kolumny z masą na szczycie, na działanie wzrastającej wykładniczo siły skręcającej. W celu zamodelowania zamontowanego na stałe końca kolumny, wykorzystano półsztywną sprężynę wirową, której nieliniowy charakter jest określony poprzez model histerezowy Preisacha. W celu rozwiązania równania ruchu, dokonano jego dyskretyzacji. Przedstawiono wyniki symulacyjne.
Wydawca
Czasopismo
Rocznik
Tom
Strony
9--12
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Bibliografia
- [1] Stoner E.C., Wohlfarth E.P., A mechanism of magnetic hysteresis in heterogeneous alloys, Reprintes in IEEE Trans. on Magn. 27 (1991) 3475-3518
- [2] Jiles D.C. , Ather ton D.L. , Theory of ferromagnetic hysteresis, J. of Magn. and Mag. Materials, 61 (1986) 48–60
- [3] Chikazumi S., Charap S.H. , Physics of Magnetism, J. Wiley (1964)
- [4] Krasnosel ’skii M.A., Pokrovski i A.V., System with Hysteresis, (in Russian) Nauka, Moscow (1983)
- [5] Mayergoyz I.D., Mathematical Model of Hysteresis, Springer (1991)
- [6] Visint in A. , Differential Models of Hysteresis, Springer (1994)
- [7] Brokatte M., Sprekels J., Hysteresis and Phase Transitions, Springer (1996)
- [8] I vanyi A. , Hysteresis Models in Electromagnetic Computation, Akademiai Kiado, Budapest (1997)
- [9] Ber tot t i G., Hysteresis in Magnetism, for Physicists, Material Scientists, and Engineers, Academic Press, NY (1998)
- [10] Della Tor re E. , Magnetic Hysteresis, IEEE Press, NY (1999)
- [11] Díaz C., Martí P., Victoria M., Querin O. M., Review on the modeling of joint behavior in steel frames, J. of Constructional and Steel Research, 67 (2011) 741–758
- [12] Kwofie S. , Description of cycling hysteresis behavior based on one-parameter model, Material and Engineering, A357, (2003) 86–93
- [13] Ramberg W., Osgood W.R. , Description of stress-strain curves by there parameters, Technical Note, No. 902, National Advisory Committee for Aeronautics, Washington DC (1943)
- [14] Demartino A., Landolfo R., Mazzolani F.M., The use of Ramberg-Osgoos law for materials of round-house type, Materails and Structures, 23 (1990) 59–67
- [15] Skelton R.P., Maier H.J., Christ H.J., The Baushinger effect, Masing model and the Ramberg-Osgood relation for cycling deformation in materials, Material Science in Engineering, A238 (1997) 377-390
- [16] Mostaghel N., Byrd R.A., Inversion of Ramberg-Osgood equation and description of hysteresis loop, Int. J. of Non- Linear Mechanics, 37 (2002) 1319-1335
- [17] N ies łony A., el Dsoki C., Kaufmann H., Krug P. , New method for evaluation of the Masson-Coffin-Basquin and Ramberg-Osgood equations with respect to compatibility, Int. J. of Fatigue, 30 (2008) 1967–1977
- [18] Ni Y.Q. , Wang J.Y. , Ko J.M. , Advanced method for modeling hysteretic behaviour of semi-rigid joints, in Advances in Steel Structures, Ed. by S.L. Chan, J.G. Teng, Proceedings of the Second Int. Conf. on Advances in Steel Structures, Hong Kong, China, 15-17 December 1999, Elsevier, I (1999) 331– 338.
- [19] Ri chard R.M. , Abbot t B.J . , Versatil elastic-plastic stressstrain formula, J. Eng. Mech. Div. ASCE, 101, 4 (1975) 511– 515
- [20] Smith R.C., Seelecke S., Dapino M., Ounaies Z., A unifies framework for modeling hysteresis in ferroic materials, J. of the Mechanics and Physics in Solids, 54 (2006) 46–85
- [21] Anglada-Rivera J., Padovese L.R., Capó-Sánchez J., Magnetic Barkhausen noise in hysteresis loop in commercial carbon steel: influence of applied tensile stress and grain size, J. of Magn. and Mag. Materials, 231 (2001) 299–306
- [22] Steven K.J . , Stress dependence of ferromagnetic hysteresis loop for two grades of steel, NDT&E International, 33 (2000) 111–121
- [23] Permiakov V., Dupré L., Pulnikov A., Melkebeek J . , Loss separation and parameters for hysteresis modeling under compressive and tensile stresses, J. of Magn. and Mag. Materials, 272–276 (2004) e2553–e2554
- [24] Aleshin V. , Van Den Abeele K. , Micro-potential model for stress-strain hysteresis of micro-cracked materials, J. of the Mechanics and Physics of Solids, 5553 (2005) 795–824
- [25] Bolshakov G.V. , Lapokov A. J. , A Preisach model for magnetoelastic hysteresis, J. of Magn. and Mag. Materials, 162 (1996) 112–116
- [26] Berquist A., Engdahl G., A stress-dependent magnetic Preisach hysteresis model, IEEE Trans. on Magn. 27 (1996) 112–116
- [27] Bachmann B., Bachman Z., St. Bartholomew's bell tower, Pollack Periodica, 5, 3, (2010) 19–26
- [28] Kuczmann M., Ivanyi A., The Finite Element Method in Magnetics, Akademiai Kiado, Budapest (2008)
- [29] Chan S.L., Chui P.P.T., Nonlinear Static and Cycling Analysis of Steel Frames with Semi-rigid Connections, Elsevier (2000)
- [30] Marot i Gy. , Finding closed-form solutions of beam vibration, Pollack Periodica, 6, 1, (2011) 141–154
- [31] Krejci P. , Forced periodic vibrations of an elastic system with elasto-plastic damping, Application of Mathematics, 33 (1988) 145–153
- [32] I vanyi A. , Continuous and Disctere Simulations in Electrodynamics, Akademiai Kiado, Budapest (2003)
- [33] Bottachio O., Chiampi M., Ragusa C., Transient analysis of hysteretic field problems using fixed point technique, IEEE Trans. on Magn, 34 (2003) 1179–1182
- [34] Kuczmann M. , Vector Preisach hysteresis modeling, measurement, identification and application, Physica B, Condensed Matter, 406 (2011) 1403-1409
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0dc77b3-cf84-4333-81c7-af7857c93f9e