PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The modern approach to manufacturing of carbon-rhenium nanocomposites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to present the high-temperature method of producing MWCNTs-Re nanocomposites, the selection of satisfactory production conditions and the presentation of the results of microscopic and spectroscopic studies of nanocomposites produced by this method. Design/methodology/approach: Two methods of manufacturing carbon-rhenium nanocomposites were tested: ineffective chemical synthesis and high-temperature reduction using H2, which was proven successful and allowed the production of nanocomposites with the expected properties. The received nanocomposites were investigated using Transmission Electron Microscope (TEM), and Scanning Electron Microscope (SEM), as well as were subjected to spectroscopic examination. Findings: The article presents three steps of MWCNTs-Re nanocomposites fabrication using the high-temperature method, functionalization, impregnation and reduction. As part of own work, satisfactory conditions for producing those nanocomposites using a materials science and heuristic analysis were selected. Research limitations/implications: The proposed high-temperature method allows to join rhenium nanoparticles with MWCNTs permanently. It is reasonable to test in the future whether the method is also effective for other carbon nanomaterials and/or nanoparticles of other metals. Practical implications: MWCNTs-Re nanocomposites can be used as sensors of gases that are harmful to the environment. It was also confirmed that the MWCNTs-Re_4 nanocomposite has catalytic properties. Originality/value: The paper presents a modern approach to the manufacturing of MWCNTs-Re nanocomposites, which assumes the use of a high-temperature furnace to heat the material in a hydrogen atmosphere.
Rocznik
Strony
57--63
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
autor
  • University of Silesia, ul. Bankowa 12, 40-007 Katowice, Poland
Bibliografia
  • [1] S. Rahmati, W. Doherty, A. Amani Babadi, M.S. Akamal CheMansor, N.M. Julkapli, V. Hessel, K. Ostrikov, Gold–Carbon Nanocomposites for Environmental Contaminant Sensing, Micromachines 12/6 (2021) 719. DOI: https://doi.org/10.3390/mi12060719
  • [2] I. Anshori, L. Nuraviana Rizalputri, R. Rona Althof, S. Sean Surjadi, S. Harimurti, G. Gumilar, B. Yuliarto, M. Handayani, Functionalized multi-walled carbon nanotube/silver nanoparticle (f-MWCNT/AgNP) nanocomposites as non-enzymatic electrochemical biosensors for dopamine detection, Nanocomposites 7/1 (2021) 97-108. DOI: https://doi.org/10.1080/20550324.2021.1948242
  • [3] J. Li, X. Huang, W. Shi, M. Jiang, L. Tian, M. Su, J. Wu, Q. Liu, C. Yu, H. Gu, Pt nanoparticle decorated carbon nanotubes nanocomposite based sensing platform for the monitoring of cell-secreted dopamine, Sensors and Actuators: B. Chemical 330 (2021) 129311. DOI: https://doi.org/10.1016/j.snb.2020.129311
  • [4] X. Ji, Y. Tang, J. Ye, S. Wu, M. Hou, S. Huang, R. Wang, The effect of carbon-based copper nanocomposites on Microcystis aeruginosa and the movability of antibiotic resistance genes in urban water, Chemosphere 286/3 (2022) 131744. DOI: https://doi.org/10.1016/j.chemosphere.2021.131744
  • [5] Y. Gao, Q. Lu, P. Yan, P. Tian, M. Zhu, B. Xiao, F. Xuan, Theory-guided design of Pd/C nanocomposite for H 2 sensing at room-temperature. Applied Surface Science 581 (2022) 152367. DOI: https://doi.org/10.1016/j.apsusc.2021.152367
  • [6] N. Wu, W. Du, Q. Hu, S. Vupputuri, Q. Jiang, Recent Development in Fabrication of Co Nanostructures and Their Carbon Nanocomposites for Electromagnetic Wave Absorption, Engineered Science 13 (2021) 11-23. DOI: http://dx.doi.org/10.30919/es8d1149
  • [7] M. Gopiraman, S. Saravanamoorthy, S. Ullah, A. Ilangovan, I.S. Kim, I.M. Chung, Reducing-agent-free facile preparation of Rh-nanoparticles uniformly anchored on onion-like fullerene for catalytic applications, Royal Society of Chemistry Advances 10 (2020) 2545-2559. DOI: https://doi.org/10.1039/C9RA09244G
  • [8] Q. Sun, J. Shi, L. Wu, F. Wu, A. Xie, Ni@Carbon nanocomposites with hierarchical three-dimensional network for electromagnetic waves absorption, Ceramics International 47/19 (2021) 27577-27585. DOI: https://doi.org/10.1016/j.ceramint.2021.06.182
  • [9] A. Sharma, G. Gupta, J. Paul, A comprehensive review on the dispersion and survivability issues of carbon nanotubes in Al/CNT nanocomposites fabricated via friction stir processing, Carbon Letters 31 (2021) 339-370. DOI: https://doi.org/10.1007/s42823-020-00207-0
  • [10] S. Ranjbar Bahadori, R. Hart, Y.W. Hao, Synthesis of cobalt, palladium, and rhenium nanoparticles, Tungsten 2 (2020) 261-288. DOI: https://doi.org/10.1007/s42864-020-00057-3
  • [11] M. Zhu, H.P. Shao, H.L. Zhai, Y. Meng, R. Liu, C. Ren, Rhenium nanoparticles for the delivery of HSP 90 inhibitors: A new drug delivery platform designed by molecular dynamics simulation, Journal of Molecular Liquids 347 (2022) 117995. DOI: https://doi.org/10.1016/j.molliq.2021.117995
  • [12] A. Naor-Pomerantz, N. Eliaz, E. Gileadi, Electrodeposition of rhenium-tin nanowires, Electrochimica Acta 56/18 (2011) 6361-6370. DOI: https://doi.org/10.1016/j.electacta.2011.05.022
  • [13] J. Okal, K. Adamska, Thermal Stability of Ru-Re NPs in H 2 and O 2 Atmosphere and Their Activity in VOCs Oxidation: Effect of Ru Precursor, Catalysis Letters 152 (2022) 55-74. DOI: https://doi.org/10.1007/s10562-021-03607-7
  • [14] F. Zhang, X. Pan, Y. Hu, L. Yua, X. Chen, P. Jiang, H. Zhang, S. Deng, J. Zhang, T.B. Bolin, S. Zhang, Y. Huang, X, Bao, Tuning the redox activity of encapsulated metal clusters via the metallic and semiconducting character of carbon nanotubes, PNAS 110/37 (2014) 14861-14866. DOI: https://doi.org/10.1073/pnas.1306784110
  • [15] L.T. Norman, J. Biskupek, G.A. Rance, C.T. Stoppiello, U. Kaiser, A.N. Khlobystov, Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes, Nano Research 15/2 (2022) 1282-1287. DOI: https://doi.org/10.1007/s12274-021-3650-2
  • [16] K.V. Kremlev, A.M. Obiedkov, S. Yu. Ketkov, B.S. Kaverin, N.M. Semenov, G.A. Domrachev, S.A. Gusev, D.A. Tatarskiy, P.A. Yunin, New hybrid material based on multiwalled carbon nanotubes decorated with rhenium nanoparticles, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 9/4 (2015) 694-698. DOI: https://doi.org/10.1134/S1027451015040114
  • [17] M. Kim, Z. Yang, J.H. Park, S.M. Yoon, B.A. Grzybowski, Nanostructured Rhenium-Carbon Composites as Hydrogen-Evolving Catalysts Effective over the Entire pH Range, ACS Applied Nano Materials 2/5 (2019) 2725-2733. DOI: https://doi.org/10.1021/acsanm.9b00236
  • [18] O. Miramontes, F. Bonafé, U. Santiago, E. Larios-Rodriguez, J.J. Velázquez-Salazar, M.M. Mariscal, M.J. Yacaman, Ultra-small rhenium clusters supported on graphene, Physical Chemistry Chemical Physics 17/12 (2015) 7898-7906. DOI: https://doi.org/10.1039/C4CP05660D
  • [19] P. Veerakumar, C. Rajkumar, S.-M. Chen, B. Thirumalraj, K.-C. Lin, Activated porous carbon supported rhenium composites as electrode materials for electrocatalytic and supercapacitor applications, Electrochimica Acta 271 (2018) 433-447. DOI: https://doi.org/10.1016/j.electacta.2018.03.165
  • [20] P. Veerakumar, A. Sangili, S.-M. Chen, A. Pandikumar, K.-C. Lin, Fabrication of Platinum-Rhenium Nano-particle-Decorated Porous Carbons: Voltammetric Sensing of Furazolidone, ACS Sustainable Chemistry and Engineering 8 (2020) 3591-3605. DOI: https://doi.org/10.1021/acssuschemeng.9b06058
  • [21] P. Veerakumar, V. Vinothkumar, S.-M. Chen, A. Sangili, K.-C. Lin, Ultrafine rhenium-ruthenium nano-particles decorated on functionalized carbon nanotubes for the simultaneous determination of antibiotic (nitrofurantoin) and anti-testosterone (flutamide) drugs, Journal of Materials Chemistry C 9 (2021) 15949-15966. DOI: https://doi.org/10.1039/D1TC02885E
  • [22] A. Dobrzańska-Danikiewicz, W. Wolany, G. Benke, Z. Rdzawski, The new MWCNTs-rhenium nano-composite, Physica Status Solidi B 251/12 (2014) 2485-2490. DOI: https://doi.org/10.1002/pssb.201451360
  • [23] A.D. Dobrzańska-Danikiewicz, W. Wolany, A rhenium review- from discovery to novel applications, Archives of Materials Science and Engineering 82/2 (2016) 70-78. DOI: https://doi.org/10.5604/01.3001.0009.7106
  • [24] A. Dobrzańska-Danikiewicz, D. Cichocki, M. Pawlyta, D. Łukowiec, W. Wolany, Synthesis conditions of carbon nanotubes with the chemical vapor deposition method, Physica Status Solidi B 251/12 (2014) 2420-2425. DOI: https://doi.org/10.1002/pssb.201451178
  • [25] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, Synthesis and characterization of Pt/MWCNTs nanocomposites, Physica Status Solidi B 250/12 (2013) 2569-2574. DOI: https://doi.org/10.1002/pssb.201300083
  • [26] W. Wolany, A.D. Dobrzańska-Danikiewicz, G. Benke, Z. Rdzawski, Nanocomposite from carbon nanotubes and a heat-resistant noble metal and the way of its fabrication, Pat. 229097, Polish Patent Office, 2017 (in Polish).
  • [27] W. Wolany, The newly developed nanocomposites consisting of nanostructured rhenium combined with carbon nanomaterials, PhD Thesis, Silesian Univesity of Technology, Gliwice, 2016 (in Polish).
  • [28] A.D. Dobrzańska-Danikiewicz, Foresight methods for technology validation, roadmapping and development in the surface engineering area, Archives of Materials Science Engineering 44/2 (2010) 69-86.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0d9c3a0-ccda-4ff5-b83f-5fa6d825f396
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.