PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetics of hydrophobic agglomeration of molybdenite fines in aqueous suspensions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The kinetics of hydrophobic agglomeration of molybdenite fines in aqueous suspensions has been studied in this work. This study was performed on minus 5 μm molybdenite particles through turbid-ity measurements and imaging. The results have showed that stirring strength and kerosene addition greatly affected the agglomeration rate of molybdenite fines in aqueous suspensions. The higher was the stirring strength, the larger the agglomeration rate was. Kerosene addition enhanced not only the agglom-eration rate, but also the agglomerates structure. It was recommended to use radial impeller for the for-mation of hydrophobic agglomeration, because it produced a stronger shear field in impeller zone.
Rocznik
Strony
181--189
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Instituto de Metalurgia, Universidad Autonoma de San Luis Potosi, Av. Sierra Leona 550, San Luis Potosi, C.P. 78210, Mexico
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
  • Instituto de Metalurgia, Universidad Autonoma de San Luis Potosi, Av. Sierra Leona 550, San Luis Potosi, C.P. 78210, Mexico
Bibliografia
  • 1. CASTRO, S. H., MAYTA, E., 1994, A kinetics approach to the effect of particle size on the flotation of molibdenite, 4th Meeting of the Southern of the Hemisphere on Mineral Technology and 3rd Latin American Congress on Froth Flotation, Concepcion, Chile
  • 2. CEBECI, Y., 2003, Investigation of kinetics of agglomerate growth in oil agglomeration process, Fuel 82, 1645-1651.
  • 3. CHANDER, S., FUERSTENAU, D.W., 1972, On the natural floatability of molybdenite, Trans. AIME. 252, 62-69.
  • 4. COLEMAN, R.D., SPARKS, B.D., MAJID, A., TOLL, F.N., 1995, Agglomeration-flotation: recovery of hydrophobic components from oil sands fine tailings, Fuel 74, 1156-1161.
  • 5. DUZYOLA, S. OZKAN, A., 2011, Correlation of flocculation and agglomeration of dolomite with its wettability, Sep. Sci. Technol. 46, 876-881.
  • 6. GIBBS, R.J., KONWAR, L.N., 1982, Effect of pipetting on mineral flocs, Environ. Sci. Technol. 16, 119-121.
  • 7. GREENE, E.W., DUKE, J.B., 1962, Selective Froth Flotation of Ultrafine Minerals or Slimes, Trans. AIME. 223, 389-395.
  • 8. LINCE, J. R., FRANTZ, P., 2001, Anisotropic oxidation of mos2 crystallites studied by angle-resolved x-ray photoelectron spectroscopy, Tribol. Lett. 9, 211-218.
  • 9. LIU, Q., WANNAS, D., PENG, Y., 2006, Exploiting the dual functions of polymer depressants in fine particle flotation, Int. J. Miner. Process. 80, 244-254.
  • 10. LU, S., DING, Y., GUO, J., 1998, Kinetics of fine particle aggregation in turbulence, Adv. Colloid Inter-face Sci. 78, 197-235.
  • 11. LU, S., SONG, S., 1991, Hydrophobic interaction in flocculation and flotation 1. hydrophobic floccula-tion of fine mineral particles in aqueous solution, Colloids Surf. A 57, 49-60.
  • 12. ORNELAS-TABARES, J., MADRID-ORTEGA, I., REYES-BAHENA, J. L., SANCHEZ-LOPEZ, A. A., VALDEZ-PEREZ, D., LOPEZ-VALDIVIESO, A., 2006, Surface properties and ploatability of molydenite, Proceedings of 2006 China-Mexico Workshop on Minerals Particle Technology, San Luis Potosi, Mexico.
  • 13. PATIL, D. P., ANDREWS, J. R. G., UHLHERR, P. H. T., 2001, Shear flocculation—kinetics of floc coalescence and breakage, Int. J. Miner. Process. 61, 171-188.
  • 14. SONG, S., LOPEZ-VALDIVIESO, A., DING, Y., 1999, Effects of nonpolar oil on hydrophobic floccula-tion of hematite and rhodochrosite fines, Powder Technol. 101, 73-80.
  • 15. SONG, S., LOPEZ-VALDIVIESO, A., REYES-BAHENA, J. L., BERMEJO-PEREZ, H. I., 2001, Hy-drophobic flocculation of sphalerite fines in aqueous solution induced by ethyl and amyl xanthates, Colloids Surf. A, 181, 159-169
  • 16. SONG, S., ZHANG, X., YANG, B., LOPEZ-MENDOZA, A., 2012, Flotation of molybdenite fines as hydrophobic agglomerates, Sep. Purif. Technol. 98, 451-455.
  • 17. SPICER, P. T., KELLER, W., PRATSINIS, S. E., 1996, The effect of impeller type on floc size and struc-ture during shear-induced flocculation, J. Colloid Interface Sci. 184, 112-122.
  • 18. SPICER, P. T., PRATSINIS, S. E., RAPER, J., AMAL, R. BUSHELL, G., MEESTERS, G., 1998, Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks, Power Technol. 97, 26-34.
  • 19. YANG, B., SONG, S., LOPEZ-VALDIVIESO, A., 2014, Effect of particle size on the contact angle of molybdenite powders, Miner. Proces. Extract. Metal. Rev. 35, 208-215.
  • 20. ZENG, L., LI, X., LIU, J., 2004, Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings, Water Res. 38, 1318-1326.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0d43c4b-c90b-4771-9367-2490bda0107e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.