PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optymalizacja konstrukcji laboratoryjnej suszarki o naturalnym obiegu powietrza za pomocą zweryfikowanej eksperymentalnie analizy CFD

Identyfikatory
Warianty tytułu
EN
Optimisation of a natural air circulation laboratory heating oven construction using an experimentally validated 3-D CFD analysis
Języki publikacji
PL
Abstrakty
PL
W artykule opisano model numerycznej mechaniki płynów oraz zaprezentowano badania eksperymentalne procesów cieplno-przepływowych w cieplarce o naturalnym obiegu powietrza. Analizowane urządzenie służy do przechowywania próbek laboratoryjnych i produktów w wysokiej, stałej i przestrzennie wyrównanej temperaturze. W celu określenia danych do sformułowanego modelu matematycznego, wykonano szereg pomiarów prowadzących do wyznaczenia warunków brzegowych na powierzchni grzałek oraz emisyjności wewnętrznych i zewnętrznych powierzchni obudowy koniecznych do określenia radiacyjnych strumienia ciepła. Ponadto do walidacji modelu wykonano pomiary przestrzennego pola temperatury i prędkości za pomocą zestawu termopar i techniki Particie Image Velocimetry. Na podstawie wyników uzyskanych z modelu, zaproponowano i opracowano procedurę optymalizacyjną położenia grzałek i otworów nawiewnych w komorze urządzenia. Zoptymalizowane elementy pozwoliły na uzyskanie znacznie poprawionych równomierności pola temperatury w komorze przechowywania urządzania.
EN
This paper discusses a 3-D Computational Fluid Dynamics (CFD) model and presents experimental analysis of the flow and thermal processes within a laboratory heating oven with a natural air circulation. This device is used to store laboratory samples and products at a high, constant and spatially uniform temperature. To formulate the mathematical model, a number of experiments were carried out to determine the temperature boundary conditions along the U-shaped heaters and the emissivity of the internal and external walls to determine the radiative heat fluxes. In addition, to validate the spatial temperature and velocity fields in the storage chamber and on the external oven walls, a set of thermocouples and Particie Image Velocimetry (PIV) were employed. Based on the results of the model, two optimisation procedures are performed to position optimally the electric heater and air distribution gaps using simplified geometries of the device. The optimised solutions show a substantial improvement in the uniformity of the temperature field in the storage chamber.
Rocznik
Tom
Strony
24--34
Opis fizyczny
Bibliogr. 24 poz., il., tab.
Twórcy
autor
  • Politechnika Śląska, ul. Konarskiego 22, 44-100 Gliwice
autor
  • Politechnika Śląska, ul. Konarskiego 22, 44-100 Gliwice
autor
  • Politechnika Śląska, ul. Konarskiego 22, 44-100 Gliwice
Bibliografia
  • 1. Smołka J., Nowak AJ., Rybarz D.: lmproved 3-D temperature uniformity in a laboratory drying oven based on experimentally validated CFD computations. Journal of Food Engineering, Vol. 97, 2010, pp. 373 - 383.
  • 2. KhatirZ., Paton J., Thompson H., Kapur N. et al.: Computational fluid dynamics (CFD) investigation of air flow and temperature distribution in a small scale bread-baking oven. Applied Energy, Vol. 89, 2012, pp. 89 - 96.
  • 3. Delele M.A., Schenk A., Tijskens E., Ramon H., Nicolai B.M., Verboven P.: Optimization of the humidification of cold Stores by pressurized water atomizers based on a multiscale CFD model. Journal of Food Engineering, Vol. 91, 2009, pp. 228 - 239.
  • 4. Geedipalli S.S.R., Rakesh V., Datta A.K.: Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. Journal of Food Engineering, Vol. 82, 2007, pp. 359 - 368.
  • 5. Gunasekaran S., Yang H.-W.: Effect of experimental parameters on temperaturę distribution during continuous and pulsed microwave heating. Journal of Food Engineering, Vol. 78, 2007, pp. 1452 - 1456.
  • 6. Mirade P.-S., Daudin J.-D.: Computational fluid dynamics prediction and validation of gas circulation in a cheese-ripening room. International Dairy Journal, Vol. 16, 2006, pp. 920 - 930.
  • 7. Navaneethakrishnan P., Snnivasan P.S.S., Dhandapani S.: Heat transfer and heating rate of food stuffs in commercial shop ovens. Sadhana-Academy Proceedings in Engineering Sciences, Vol. 32, 2007, pp. 535 - 544.
  • 8. Wang L., Sun D.-W.: Recent developments in numerical modelling of heating and cooling processes in the food industry - a review. Trends in Food Science & Technology, Vol. 14, 2003, pp. 408 - 423.
  • 9. Mirade P.-S.: Prediction of the air velocity field in modem meat dryers using unsteady computational fluid dynamics (CFD) models. Journal of Food Engineering, Vol. 60, 2O03, pp. 41 - 48.
  • 10. Stamatios J., Babalis S.J., Belessiotis V.G.: Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. Journal of Food Engineering, Vol. 65, 2004, pp. 449 - 458.
  • 11. Huan, Z, Mab, Y., Hea S.: AirfIow blockage and guide tech-nology on energy saving for spiral quick-freezer. International Journal of Refrigeration, Vol. 26, 2003, pp. 644 - 651.
  • 12. Nahor H.B., Hoang M.L., Verboven P. et al: CFD model of the airflow, heat and mass transfer in cool stores. International Journal of Refrigeration, Vol. 28, 2005, pp. 3 68 - 380.
  • 13. Swami S.B., Das S.K., Maiti B.: Convective hot air drying and quality characteristics of bori: A traditional Indian nugget prepared from black gram pulse batter. Journal of Food Engineering, Vol. 79, 2007, pp. 225 - 233.
  • 14. Verboven P., Scheerlinck N., De Baerdemaeker J., Nicolai B.M.: Computational fluid dynamics modelling and validation of the temperaturę distribution in a forced convection oven, Journal of Food Engineering, Vol. 43, 2000, pp. 61 - 73.
  • 15. Wong S.-Y., Zhou W., Hua J.: Designing process controller for a continuous bread baking process based on CFD modeling. Journal of Food Engineering, Vol. 81, 2007, pp. 523 - 534.
  • 16. Verboven P., Scheerlinck N., De Baerdemaeker J., Nicolai B.M.: Computational fluid dynamics modelling and validation of the isothermal air flow in a forced convection oven. Journal of Food Engineering, Vol. 43, 1999, pp. 41 - 53.
  • 17. Verboven P., Datta A.K., Anh N.T., Scheerlinck N., Nicolai B.M.: Computation of airflow effects on heat and mass transfer in a microwave oven, Journal of Food Engineering, Vol. 59, 2003, pp. 181 - 190.
  • 18. Computational Fluid Dynamics Software, User's manuał, Release 6.3, www.ansys.com. Ansys Inc., 2006.
  • 19. Chui E., Raithby G.: Computation of radiant heat transfer on a non-orthogonal mesh using the Finite-Volume method. Numerical Heat Transfer, Part B, Vol. 23, 1993, pp. 269 - 288.
  • 20. Anderson J.D.: Computational Fluid Dynamics. The basics with applications, McGraw-Hill, New York 1995.
  • 21. Cengel Y.A.: Heat and mass transfer. A practical approach, McGraw-Hill, New York 2007.
  • 22. Mitchell M.: An introduction to genetic algorithms, The MIT Press, 1998.
  • 23. Smolka J., Nowak A. J.: Shape optimization of coils and cooling ducts in dry-type transformers using CFD and GA. IEEE Transactions on Magnetics, Vol. 99, 2011, pp. 1726 - 1731.
  • 24. Standard DIN 12880 (2007). Electrical laboratory devices - Heating ovens and incubators.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0d3f8ac-f0ab-458e-b2cd-2219af8a1ab7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.