PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical behaviour of knit synthetic mesh used in hernia surgery

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: There is a discussion in literature concerning mechanical properties and modelling of surgical meshes. An important feature of elastic modulus dependency on load history is taken into account in this paper, as implants are subjected to variable loading during human activity. The example of DynaMesh®-IPOM surgical implant is studied. Methods: The analysis is based on failure tension tests and cyclic loading and unloading tests performed for the material samples. Stiffness changes of the material samples within successive load cycles are noted. The values the elastic modulus of the material tend to during successive cycles determine the material stiffness in the preconditioned state. The analysis is performed for two axes of the mesh, as the material reveals orthotropic properties. Results: For the initial displacements state of the material bilinear stiffness functions are determined for the two considered material axes. The functions for the preconditioned state are specified basing in the observed stiffness changes in subsequent loading cycles in experiments with different load (and strain) ranges. The identified elastic modulus values for different strain levels in the preconditioned state are then a basis for the nonlinear stiffness function formulation. Conclusions: The author concludes that two states of the considered mesh should be considered in calculations, initial and preconditioned ones. As the material stiffness in its preconditioned state is higher than in the initial one, omitting of the preconditioned state in calculation, e.g., considering fixation of the mesh, may lead to underestimation of necessary fixation strength.
Rocznik
Strony
77--86
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering
Bibliografia
  • [1] BANSAL V.K., MISRA M.C., KUMAR S., RAO Y.K., SINGHAL P., GOSWAMI A., GULERIA S., ARORA M.K., CHABRA A., A prospective randomized study comparing suture mesh fixation versus tacker mesh fixation for laparoscopic repair of incisional and ventral hernias, Surg. Endosc., 2011, 25:1431–1438.
  • [2] BENSLEY R.P., SCHERMERHORN M.L., HURKS R., SACHS T., BOYD C.A., O’MALLEY A.J., COTTERILL P., LANDON B.E., Risk of late-onset adhesions and incisional hernia repairs after surgery, J. Am. Coll. Surg., 2013, 216:1159–1167.
  • [3] BRANDT S., Statistical and Computational Methods in Data Analysis (ed. 3), Springer Verlag, New York, 1997.
  • [4] DEEKEN C.R., ABDO M.S., FRISELLA M.M., MATTHEWS B.D., Physicomechanical evaluation of absorbable and nonabsorbable barrier composite meshes for laparoscopic ventral hernia repair, Surg. Endosc., 2011, 25:1541–52.
  • [5] ELIASON B.J., FRISELLA M.M., MATTHEWS B.D., DEEKEN C.R., Effect of repetitive loading on the mechanical properties of synthetic hernia repair materials. J. Am. Coll. Surg., 2011, 213, 430–435.
  • [6] HERNÁNDEZ-GASCÓN B., ESPÉS N., PEÑA E., PASCUAL G., BELLÓN J.M., CALVO B., Computational framework to model and design surgical meshes for hernia repair, Comput Methods Biomech. Biomed. Eng., 2012, http://dx.doi.org/10.1080/ 10255842.2012.736967.
  • [7] HERNÁNDEZ-GASCÓN B., MENA A., PEÑA E., PASCUAL G., BELLÓN J.M., CALVO B., Understanding the passive mechanical behavior of the human abdominal wall, Ann. Biomed. Eng., 2013, 41:433–444.
  • [8] KŁOSOWSKI P., ZAGUBIEŃ A., WOZNICA K., Investigation on rheological properties of technical fabric Panama, Arch. Appl. Mech., 2004, 73:661–681.
  • [9] LI X., KRUGER J., JOR J., NASH M., WONG V., DIETZ P., Characterizing the ex vivo mechanical properties of synthetic polypropylene surgical mesh, J. Mech. Behav. Biomed. Mat., 2014, 37:48–55.
  • [10] LUBOWIECKA I., Behaviour of orthotropic surgical implant in hernia repair due to the material orientation and abdomen surface deformation, Comput. Method Biomech., 2013, DOI: 10.1080/10255842.2013.789102.
  • [11] LYONS R.G., Understanding Digital Signal Processing, Addison Wesley Longman Inc., 1997.
  • [12] MROZOWSKI J., AWREJCEWICZ J., Foundations of Biomechanics (in Polish), Łódź, Wydawnictwo Politechniki Łódzkiej, 2004.
  • [13] PODWOJEWSKI F., OTTÉNIO M., BEILLAS P., GUÉRIN G., TURQUIER F., MITTON D., Mechanical response of animal abdominal walls in vitro: evaluation of the influence of a hernia defect and a repair with a mesh implanted intraperitoneally, J. Biomech, 2013, 46, 561–566.
  • [14] POULOSE B.K., SHELTON J., PHILLIPS S., MOORE D., NEALON W., PENSON D., BECK W., HOLZMAN M.D., Epidemiology and cost of ventral hernia repair: making the case for hernia research, Hernia, 2012, 16, 179–183.
  • [15] RÖHRNBAUER B., OZOG Y., EGGER J., WERBROUCK E., DEPREST J., MAZZA E., Combined biaxial and uniaxial mechanical characterization of prosthetic meshes in a rabbit model, J. Biomech., 2013, 46, 1626–1632.
  • [16] RÖHRNBAUER B., MAZZA E., Uniaxial and biaxial mechanical characterization of a prosthetic mesh at different length scales, J. Mech. Behav. Biomed. Mater., 2014, 29, 7–19.
  • [17] SABERSKI E.R., ORENSTEIN S.B., NOVITSKY Y.W., Anisotropic evaluation of synthetic surgical meshes, Hernia, 2011, 15, 47–52.
  • [18] SONG C., ALIJANI A., FRANK T., HANNA G., CUSCHIERI A., Elasticity of the living abdominal wall in laparoscopic surgery, J. Biomech., 2006, 9, 587–591.
  • [19] STRUSZCZYK M.H., KOMISARCZYK A., KRUCIŃSKA I., GUTOWSKA A., PAŁYS B., CIECHAŃSKA D., Biomechanical Studies of Novel Hernia Meshes with Enhanced Surface Behaviour,FIBRES TEXT, East Eur., 2014, 22, 129–134.
  • [20] SZEPIETOWSKA K., LUBOWIECKA I., Mechanical behaviour of the implant used in human hernia repair under physiological loads, Acta Bioeng. Biomech., 2013, 15(3), 89–96.
  • [21] SZYMCZAK C., LUBOWIECKA I., TOMASZEWSKA A., ŚMIETAŃSKI M., Investigation of abdomen surface deformation due to life excitation: Implication for implant selection and orientation in laparoscopic ventral hernia repair, Clin. Biomech., 2012, 27, 105–110.
  • [22] SZYMCZAK C., LUBOWIECKA I., TOMASZEWSKA A., ŚMIETAŃSKI M., Modeling of the fascia-mesh system and sensitivity analysis of a junction force after a laparoscopic ventral hernia repair, J. Theor. Appl. Mech., 2010, 48, 933–950.
  • [23] TOMASZEWSKA A., LUBOWIECKA I., SZYMCZAK C., ŚMIETAŃSKI M., MERONK B., KŁOSOWSKI P., BURY K., Physical and mathematical modelling of implant-fascia system in order to improve laparoscopic repair of ventral hernia, Clin. Biomech., 2013, 28, 743–751.
  • [24] VELAYUDHAN S., MARTIN D., COOPER-WHITE, J., Evaluation of dynamic creep properties of surgical mesh prosthesesuniaxial fatigue, J. Biomed. Mater Res. Part B: Appl. Biomater., 2009, 91, 287–296.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0d0d9ac-7d79-48fd-9de6-3ed02d532d50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.