PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Design and Technological Parameters of the Designed Solar Dryer with a Heat Pump

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article describes design of a solar dryer with a heat pump, which is used to increase heat output of the unit twice to solve the problem of using environmentally clean sources of thermal energy for fruit drying. The authors of the research have developed methodology of substantiation of the solar dryer parameters, which is applied to design and justify the optimal technological modes and parameters of the heat carrier in the unit, to describe the heat transfer characteristics of the unit operation, to assess the impact of physical environmental parameters on technological indicators of the process. The novelty described in the article is developed design of a solar dryer with a heat pump and to substantiate its constructive and technological structure. The work supplies scientifically substantiated methodic recommendations on composing and forecasting a parametric series of solar dryers for the conditions of private households and farms, and grounds their design parameters. Designed solar dryer with a heat pump affects solving environmental problems of power engineering due to substitution of the electric and thermal energy by the one obtained from solar energy, and mitigation of social problems by creating new job places needed when producing, installing and exploiting such units. The obtained results can be used for designing and improving technical aspects of fruit drying, to increase technological and energy efficiency of the process.
Twórcy
  • Department of Power Engineering, Lviv National Environmental University, 1 V. Velykoho Str., Dubliany, 80381, Ukraine
  • Department of Renewable Energy Sources Engineering and Technical Systems, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Department of Renewable Energy Sources Engineering and Technical Systems, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
autor
  • Cyclone Manufacturing Inc, Mississauga, Ontario, L5N 5S1, Canada
  • Department of Information Technologies, Lviv National Environmental University, 1 V. Velykoho Str., Dubliany, 80381, Ukraine
  • Department of Mechanical Engineering, Lviv National Environmental University, 1 V. Velykoho Str., Dubliany, 80381, Ukraine
  • Department of Power Engineering, Lviv National Environmental University, 1 V. Velykoho Str., Dubliany, 80381, Ukraine
  • Department of Power Engineering, Lviv National Environmental University, 1 V. Velykoho Str., Dubliany, 80381, Ukraine
  • Department of Renewable Energy Sources Engineering and Technical Systems, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Department of Renewable Energy Sources Engineering and Technical Systems, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
  • 1. Ozarkiv I.M., Ferents O.B., Kobrynovych M.S. Peculiarities of designing a solar drying unit for timber. Scientific bulletin of NLTU, 2007; 17(1): 91–96.
  • 2. Abubakar S., Umaru S., Kaisan M.U., Umar U.A., Ashok B., Nanthagopal K. Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage. Renewable Energy, 2018; 128: 285–298. https://doi.org/10.1016/j.renene.2018.05.049.
  • 3. Mehta P., Samaddar S., Patel P., Markam B., Maiti S. Design and performance analysis of mixed modetent type solar dryer for fish drying in coastal areas. Solar energy. 2018; 170: 671–681. https://doi.org/10.1016/j.solener.2018.05.095.
  • 4. Yagnesh B. Chauhan and Pravin P. Rathore. A comprehensive review of the solar dryer. International Journal of Ambient Energy, 2020; 41(3): 348–367. https://doi.org/10.1080/01430750.2018.1456960.
  • 5. Berville C., Croitoru C.-V., Nastase L. Recent Advances in Solar Drying Technologies - A Short Review. 2019 International Conference On Energy AndEnvironment (CIEM), 23 December 2019; 294–298. https://doi.org/10.1109/CIEM46456.2019.8937614.
  • 6. Raj A.K., Srinivas M. and Jayaraj S. A cost-effective method to improve the performance of solar air heaters using discrete macro-encapsulated PCM capsules for drying applications. Applied Thermal Engineering. 2019; 146: 910–920. https://doi.org/10.1016/j.applthermaleng.2018.10.055.
  • 7. Bandara W., Amarasekara B.K. and Rupasinghe C.P. Assessment of the possibility of unglazed transpired type solar collector to be used for drying purposes: a comparative assessment of efficiency of unglazed transpired type solar collector with glazed type solar collector. Procedia Engineering. 2018; 212: 1295–1302. https://doi.org/10.1016/j.proeng.2018.01.167.
  • 8. Seerangurayar T., Al-Ismaili A.M., Jeewantha L.H.J., Al-Habsi N.A. Effect of solar drying methods on color kinetics and texture of dates. Food and Bioproducts Processing. 2019; 116: 227–239. https://doi.org/10.1016/j.fbp.2019.03.012.
  • 9. Vengsungnle P., Jongpluempiti J., Srichat A., Wiriyasart S., Naphon P. Thermal performance of the photovoltaic–ventilated mixed mode greenhouse solar dryer with automatic closed loop control for Ganoderma drying. Case Studies in Thermal Engineering. 2020; 21: 100659. https://doi.org/10.1016/j.csite.2020.100659.
  • 10. Sharma K., Wadhawan N. Effect of natural and forced convection solar dryers in retention of proximate nutrients in tomato. Int. J. Сurr. Microbiol. 2018; 7(7): 1175–1186. https://doi.org/10.20546/ijcmas.2018.707.142.
  • 11. Khasawneh, A., Qawaqzeh, M., Kuchanskyy, V., Rubanenko Miroshnyk, O., Shchur,T., Drechny M. Optimal determination method of the transposition steps of an extra high voltage power transmission line. Energies. 2021; 14(20): 6791. https://doi.org/10.3390/en14206791
  • 12. Tymchuk S., Piskarev O., Miroshnyk O., Halko S., Shchur T. Expansion of the area of practical application of the plc control system with parallel architecture. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska, 2022; 12(3): 16–19. http://doi.org/10.35784/iapgos.2983.
  • 13. Słomczyńska K., Mirek P., Panowski M. Solar heating for pit thermal energy storage–comparison of solar thermal and photovoltaic systems in TRNSYS 8. Advances in Science and Technology. Research Journal, 2022; 16(5): 40–51.
  • 14. Korobka S., Babych M. Substatiation of the constructive-technologocal parameters of a solar fruit dryer, Eastern-European Journal of Enterprise Technologies. 2017; 1, 8(85): 13–19. https://doi.org/10.15587/1729-4061.2017.90299.
  • 15. Obstawski P., Tomczuk K. High-temperature twostage subcritical heat pump running on environmentally friendly refrigerants. Advances in Science and Technology. Research Journal, 2024; 18(3).
  • 16. Korobka S., Babych M., Krygul R., Zdobytskyj А. Results of research into technological process of fruit drying in the solar. Eastern-European Journal of Enterprise Technologies. 2018; 1, 1/8 (91): 64–73. https://doi.org/10.15587/1729-4061.2018.122816.
  • 17. Khazimov Z.M., Bora G.C., Khazimov K.M., Khazimov M.Z., Modeling of the motion of free convective drying agent in plastic helio dryer. Journal of Engineering Thermophysics. 2014; 23(4): 306−315. https://doi.org/10.1134/S1810232814040080.
  • 18. Kituu G.M., Shitanda D.R., Kanali C.L., Mailutha J.T. Thin layer drying model for simulating the drying of tilapia fish in a solar tunnel dryer. Journal of Food Engineering. 2010; 98(3): 325−331. https://doi.org/10.1016/j.jfoodeng.2010.01.009.
  • 19. Janjai S., Phusampao C., Nilnont W., Pankaew P. Experimental performance and modeling of a greenhouse solar dryer for drying macadamia nuts. International Journal of Scientific & Engineering Research. 2014; 5(6).
  • 20. Manoj M., Manivaimair A. Simulation of solar dryer utilizing green house effect for cocoa bean drying. International Journal of Advanced Engineering Technology. 2013; IV(II).
  • 21. Kaveh M., Amiri Chayjan R., Esna-Ashari M. Thermal and physical properties modelling of terebinth fruit (Pistacia atlantica L.) under solar drying. Research in Agricultural Engineering. 2015; 61(4): 150−161. https://doi.org/10.17221/45/2013-RAE.
  • 22. Azimi А., Tavakoli T., Khademhosseini H. Experimental study on eggplant drying by an indirect solar dryer and open sun drying. Iranica Journal of Energy & Environment. 2012; 3(4): 347−353. https://doi.org/10.5829/idosi.ijee.2012.03.04.09.
  • 23. Misha S., Mat S., Ruslan M. H., Sopian K., Salleh E. Review on the application of a tray dryer system for agricultural products. World Applied Sciences Journal. 2013; 22(3): 424−433. https://doi.org/10.5829/idosi.wasj.2013.22.03.343.
  • 24. Mohanraj M., Chandrasekar P. Performance of a forced convection solar drier integrated with gravel as heat storage for chili drying. Journal of Engineering Science аnd Technology. 2009; 4(3).
  • 25. Obstawski P, Tomczuk K. High-temperature twostage subcritical heat pump running on environmentally friendly refrigerants. Advances in Science and Technology Research Journal. 2024; 18(3): 369–381. https://doi.org/10.12913/22998624/187103.
  • 26. Kruszelnicka W., Opielak M., Ambrose K., Pukalskas S., Tomporowski A.; Walichnowska, P. Energy-dependent particle size distribution models for multi-disc mill. Materials 2022; 15: 6067. https://doi.org/10.3390/ma15176067.
  • 27. Babych M., Korobka S., Skrynkovskyy R., Korobka S., Krygul R. Substantiation of economic efficiency of using a solar dryer under conditions of personal peasant farms. Eastern-European Journal of Enterprise Technologies. 2016; 6, 6/8(84): 41–47. https://doi.org/10.15587/1729-4061.2016.83756.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0cf5cbf-8fe1-4032-89b6-9df369e3ef3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.