PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of friction coefficient variation on temperature field in rotary friction welding of metals – FEM study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A mathematical model is presented for investigating the temperature field caused by the rotary friction welding of dissimilar metals. For this purpose, an axisymmetric, nonlinear, boundary value problem of heat conduction is formulated with allowance for the frictional heating of two cylindrical specimens of finite length made of Al 6061 aluminium alloy and 304 stainless steel. The thermo-physical properties of materials change with increasing temperature. It was assumed that the coefficient of friction does not depend on the temperature. The mechanism of heat generation due to friction on the contact surface with the temperature field of samples is considered. The boundary problem of heat conduction was reduced to the set of nonlinear ordinary differential equations at time t relative to the values of temperature T at the finite elements nodes. The numerical solution of the problem was obtained with the inverse 2nd order differentiation method implemented in COMSOL FEM system (finite element method), with time step ∆t=0.1 (s). The influence of various values of friction coefficient is presented.
Rocznik
Strony
17--27
Opis fizyczny
Bibliogr. 26 poz., fig.
Twórcy
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Institute of Mechanical Engineering, Wiejska 45 c, 15-351 Białystok, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering, Nadbystrzycka 38 D, 20-618 Lublin, Poland
autor
  • Lublin University of Technology, Doctoral School at the Lublin University of Technology, Nadbystrzycka 38 B/406, 20-618 Lublin, Poland
Bibliografia
  • [1] Bhamji, I., Preuss, M., Threadgill, P. L., & Addison, A. C. (2011) Solid state joining of metals by linear friction welding: a literature review. Materials Science and Technology, 27(1), 2–12. https://doi.org/10.1179/026708310X520510
  • [2] Bouarroudj, E., Chikh, S., Abdi, S., & Miroud, D. (2017) Thermal analysis during a rotational friction welding. Applied Thermal Engineering, 110, 1543–1553. https://doi.org/10.1016/j.applthermaleng.2016.09.067
  • [3] Chen, Z. W., & Cui, S. (2008) On the forming mechanism of banded structures in aluminium alloy friction stir welds. Scripta Materialia, 58(5), 417–420. https://doi.org/10.1016/j.scriptamat.2007.10.026
  • [4] COMSOL Multiphysics v. 5.2a. www.comsol.com. COMSOL AB, Stockholm, Sweden.
  • [5] Ghias, S. A., Vijaya, R. B., Elanchezhian, C., Siddhartha, D., & Ramanan, N. (2019) Analysis of the friction welding mechanism of low carbon steel–stainless steel and aluminium–copper. Materials Today: Proceedings, 16(2), 766–775. https://doi.org/10.1016/j.matpr.2019.05.157
  • [6] Gooch, T. G. (1973) Friction welding. nternational metallurgical reviews, 18(1), 42-42. https://doi.org/10.1179/imtlr.1973.18.1.42
  • [7] Li, W., Vairis, A., Preuss, M., & Ma, T. (2016) Linear and rotary friction welding review. International Materials Reviews, 61(2), 71–100. https://doi.org/10.1080/09506608.2015.1109214
  • [8] Livingston, R. V. (2019) Comparison of heat generation models in finite element analysis of friction welding. PhD Tesis. Brigham Young University.
  • [9] Łukaszewicz A. (2019) Temperature field in the contact zone in the course of rotary friction welding of metals. Materials Science, 55(1), 39–45. https://doi.org/10.1007/s11003-019-00249-4
  • [10] Łukaszewicz, A. (2018) Nonlinear numerical model of heat generation in the rotary friction welding. Journal of Friction and Wear, 39(6), 476–482. https://doi.org/10.3103/S1068366618060089
  • [11] Maalekian, M. (2007). Friction welding – critical assessment of literature. Science and Technology of Welding and Joining, 12(8), 738–759. https://doi.org/10.1179/174329307X249333
  • [12] Mattie, A. A., Ezdeen, S. Y., & Khidhir, G. I. (2023) Optimization of parameters in rotary friction welding process of dissimilar austenitic and ferritic stainless steel using finite element analysis. Advances in Mechanical Engineering, 15(7), https://doi.org/10.1177/16878132231186015
  • [13] Mehta, K. P. (2019) A review on friction-based joining of dissimilar aluminum–steel joints. Journal of Materials Research, 34, 78–96. https://doi.org/10.1557/jmr.2018.332
  • [14] Pinheiro, M.A., & Bracarense, A.Q. (2019). Influence of initial contact geometry on mechanical properties in friction welding of dissimilar materials aluminum 6351 T6 and SAE 1020 Steel. Advances in Materials Science and Engineering, 1759484. https://doi.org/10.1155/2019/1759484
  • [15] Rajak, D. K., Pagar, D. D., Menezes, P. L., & Eyvazian, A. (2020) Friction-based welding processes: friction welding and friction stir welding. Journal of Adhesion Science and Technology, 34(24), 2613–2637. https://doi.org/10.1080/01694243.2020.1780716
  • [16] Ross, K., & Sorensen, C. (2013). Advances in temperature control for FSP. In Mishra, R., Mahoney, M.W., Sato, Y., Hovanski, Y., Verma, R. (Eds.), Friction Stir Welding and Processing VII (pp. 301–310). Springer. https://doi.org/10.1007/978-3-319-48108-1_31
  • [17] Rothman M.F. (1988) High-Temperature Property Data: Ferrous Alloys. ASM Int., Ohio.
  • [18] Sasmito, A., Ilman, M. N., Iswanto, P. T., & Muslih, R. (2022). Effect of rotational speed on static and fano.tigue properties of rotary friction welded dissimilar AA7075/AA5083 aluminium alloy joints. Metals, 12(1), 99. https://doi.org/10.3390/met12010099
  • [19] Senkathir S., Siddharth V.B. (2020). Friction welding of dissimilar metals (aluminium AL 6061 T6 and stainless steel AISI 304). IOP Conference Series Materials Science and Engineering, 912(3), 032043. https://doi.org/10.1088/1757-899X/912/3/032043
  • [20] Shamanian, M., Mostaan, H., Safari, M., & Szpunar, J. A. (2016) EBSD study on grain boundary and microtexture evolutions during friction stir processing of A413 cast aluminum alloy. Journal of Materials Engineering and Performance, 25(7), 2824–2835. https://doi.org/10.1007/s11665-016-2141-1
  • [21] Simoes, F., &Rodrigues, D. M. (2014). Material flow and thermo-mechanical conditions during Friction Stir Welding of polymers: Literature review, experimental results and empirical analysis. Materials & Design, 59, 344–351. https://doi.org/10.1016/j.matdes.2013.12.038
  • [22] Taban, E., Gould, J. E., & Lippold, J. C. (2010). Dissimilar friction welding of 6061–T6 aluminum and AISI 1018 steel: properties and mi-crostructural characterization. Materials & Design, 31(5), 2305–2311. . https://doi.org/10.1016/j.matdes.2009.12.010
  • [23] Thapliyal, S., & Dwivedi, D. K. (2020) Fatigue performance of friction stir welded Al2024 alloy in a different corrosive environment. Materialwissenschaft und Werkstofftechnik, 51,(2), 174–180. https://doi.org/10.1002/mawe.201800171
  • [24] Uday, M. B., Ahmad Fauzi, M. N., Zuhailawati, H. & Ismail, A. B. (2010) Advances in friction welding process: a review, Science and Technology of Welding and Joining, 15(7), 534–558. https://doi.org/10.1179/136217110X12785889550064
  • [25] Uday, M. B., Ahmad-Fauzi, M.N., Zuhailawati, H., & Ismail, A.B. (2012). Thermal analysis of friction welding process in relation to the welding of YSZ–alumina composite and 6061 aluminum alloy. Applied Surface Science, 258(20), 8264–8272. https://doi.org/10.1016/j.apsusc.2012.05.035
  • [26] Wang, G., Li, J., Wang, W., Xiong, J., & Zhang, F. (2018). Study on the effect of energy-input on the joint mechanical properties of rotary friction-welding. Metals, 8(11), 908. https://doi.org/10.3390/met8110908
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0caed49-a01d-4e03-ac1c-00cd6fe37ad8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.