PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of input parameters on the coefficient of friction during incremental sheet forming of grade 5 titanium alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ parametrów wejściowych na współczynnik tarcia podczas formowania przyrostowego blach ze stopu tytanu grade 5
Języki publikacji
EN
Abstrakty
EN
This research paper focuses on investigating the influence of input parameters on the coefficient of friction (COF) during incremental sheet forming (ISF) of grade 5 titanium sheets. Titanium alloys are widely used in various industries due to their corrosion resistance and strength to weight ratio. ISF is a flexible and cost effective process for producing complex shapes. The aim of this study was to gain insight into the frictional conditions during ISF that affect formability, surface quality, and overall process performance. The experiments were carried out using a combination of MoS2 lubrication and friction stir rotation-assisted heating. COF was measured using a high precision piezoelectric dynamometer, taking into account axial and horizontal forces. A split-plot design was used and 25 runs were performed to obtain the COF for each run. The results of the study provide valuable information on the relationship between input parameters and COF, contributing to the understanding of the frictional conditions in the ISF.
PL
Niniejszy artykuł badawczy koncentruje się na badaniu wpływu parametrów wejściowych na współczynnik tarcia podczas przyrostowego formowania blach tytanowych grade 5. Stopy tytanu są szeroko stosowane w różnych gałęziach przemysłu ze względu na ich odporność na korozję i korzystny stosunek wytrzymałości do masy. Kształtowanie przyrostowe to elastyczny i opłacalny proces produkcji elementów o złożonych kształtach. Celem tego badania była analiza warunków tarcia podczas kształtowania przyrostowego, które wpływają na formowalność blachy, jakość powierzchni i ogólną wydajność procesu. Eksperymenty przeprowadzono przy użyciu kombinacji smarowania MoS2 i ogrzewania materiału blachy wspomaganego obrotami narzędzia. Wartość współczynnika tarcia wyznaczono na podstawie składowych siły kształtowania (siły osiowej i sił poziomych), które mierzono za pomocą precyzyjnego dynamometru piezoelektrycznego. Zastosowano plan split-plot i wykonano 25 prób w celu uzyskania wartości współczynnika dla każdej z nich. Wyniki badania dostarczają cennych informacji na temat związku między parametrami wejściowymi a współczynnikiem tarcia, przyczyniając się do zrozumienia warunków tarcia występujących podczas kształtowania przyrostowego.
Rocznik
Strony
113--123
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Rzeszow University of Technology
  • Department of Materials Forming and Processing, Rzeszow University of Technology
  • Department of Materials Forming and Processing, Rzeszow University of Technology
  • Department of Materials Forming and Processing, Rzeszow University of Technology
Bibliografia
  • 1. Ajay, C.V. (2020). Parameter optimization in incremental forming of titanium alloy material. Transactions of the Indian Institute of Metals, 73(9), 2403–2413. https://doi.org/10.1007/s12666-020-02044-1
  • 2. Ambrogio, G., Palumbo, G., Sgambitterra, E., Guglielmi, P., Piccininni, A., Napoli, L.D., Villa, T., & Fragomeni, G. (2018). Experimental investigation of the mechanical performances of titanium cranial prostheses manufactured by super plastic forming and single-point incremental forming. The International Journal of Advanced Manufacturing Technology, 98, 1489–1503. https://doi.org/10.1007/s00170-018-2338-6
  • 3. Bautista-Monsalve, F., García-Sevilla, F., Miguel, V., Naranjo, J., & Manjabacas, M.C. (2021). A novel machine-learning-based procedure to determine the surface finish quality of titanium alloy parts obtained by heat assisted single point in-cremental forming. Metals, 11(8),1287. https://doi.org/10.3390/met11081287
  • 4. Cheng, Z., Li, Y., Xu, C., Liu, Y., Ghafoor, S., & Li, F. (2020). Incremental sheet forming towards biomedical implants: A review. Journal of Materials Research and Technology, 9(4), 7225–7251. https://doi.org/10.1016/j.jmrt.2020.04.096
  • 5. Decultot, N. (2011). Formage incrémental de tôle d’aluminium: Étude du procédé à l’aide de la mesure de champs et identi-fication de modèles de comportement. Universite de Toulouse.
  • 6. Duflou, J.R., Habraken, A.M., Cao, J., Malhotra, R., Bambach, M., Adams, D., Vanhove, H., Mohammadi, A., & Jeswiet, J. (2017). Single point incremental forming: state-of-the-art and prospects. International Journal of Material Forming, 11, 743–773. https://doi.org/10.1007/s12289-017-1387-y
  • 7. Durante, M., Formisano, A., Langella, A., & Minutolo, F. (2009). The influence of tool rotation on an incremental forming process. Journal of Materials Processing Technology, 209, 4621–4626. https://doi.org/10.1016/j.jmatprotec.2008.11.028
  • 8. Hamilton, K.A.S. (2010). Friction and External Surface Roughness in Single Point Incremental Forming: A study of surface friction, contact area and the ‘orange peel’ effect. Master of Applied Sciences Thesis, Queen’s University, Kingston, Ontario, Canada. Retrieved from https://qspace.library.queensu.ca/handle/1974/5425 (accessed on 19 May 2023).
  • 9. Harfoush, A., Haapala, K.R., & Tabei, A. (2021). Application of artificial intelligence in incremental sheet metal forming: A review. Procedia Manufacturing, 53, 606–617. https://doi.org/10.1016/j.promfg.2021.06.061
  • 10. Harhash, M., & Palkowski, H. (2021). Incremental sheet forming of steel/polymer/steel sandwich composites. Journal of Materials Research and Technology, 13, 417–430. https://doi.org/10.1016/j.jmrt.2021.04.088
  • 11. Hussain, G., Gao, L., & Zhang, Z. Y. (2008). Formability evaluation of a pure titanium sheet in the cold incremental forming process. The International Journal of Advanced Manufacturing Technology, 37(9), 920–926. https://doi.org/10.1007/s00170-007-1043-7
  • 12. Jadhav, S., Goebel, R., Homberg, W., & Kleiner, M. (2003). Process optimization and control for incremental forming sheet metal forming. Proceedings of the Conference of the International Deep Drawing Research Group, Bled, Slovenia, 11-15 May 2003, pp. 165–171.
  • 13. Kim, M., Lee, H., & Park, N. (2022). Evaluation of deformation for titanium alloy sheet in single point incremental forming based on asymmetric yield function. International Journal of Material Forming, 15(5), 66. https://doi.org/10.1007/s12289-022-01712-5
  • 14. Kumar, R., Kumar, G., & Singh, A. (2020). An assessment of residual stresses and micro-structure during single point incremental forming of commercially pure titanium used in biomedical applications. Materials Today: Proceedings, 28, 1261–1266. https://doi.org/10.1016/j.matpr.2020.04.147
  • 15. Li, Y., Liu, Z., Daniel, W.J.T. (Bill), & Meehan, P.A. (2014). Simulation and experimental observations of effect of different contact interfaces on the incremental sheet forming process. Materials and Manufacturing Processes, 29(2), 121–128. https://doi.org/10.1080/10426914.2013.822977
  • 16. Li, R., Wang, T., & Li, F. (2023). The formability of perforated TA1 sheet in single point incremental forming. Materials, 16(8), 3176. https://doi.org/10.3390/ma16083176
  • 17. Martins, P. A.F., Bay, N., Skjoedt, M., & Silva, M.B. (2008). Theory of single point incremental forming. CIRP Annals, 57(1), 247–252. https://doi.org/10.1016/j.cirp.2008.03.047
  • 18. McPhillimy, M., Yakushina, E., & Blackwell, P. (2022). Tailoring titanium sheet metal using laser metal deposition to improve room temperature single-point incremental forming. Materials, 15(17), 5985. https://doi.org/10.3390/ma15175985
  • 19. Milutinović, M., Lendjel, R., Baloš, S., Zlatanović, D.L., Sevšek, L., & Pepelnjak, T. (2021). Characterisation of geometrical and physical properties of a stainless steel denture framework manufactured by single-point incremental forming. Jour-nal of Materials Research and Technology, 10, 605–623. https://doi.org/10.1016/j.jmrt.2020.12.014
  • 20. Mishra, S., Yazar, K. U., Kar, A., Lingam, R., Reddy, N. V., Prakash, O., & Suwas, S. (2021). Texture and microstructure evolution during single-point incremental forming of commercially pure titanium. Metallurgical and Materials Trans-actions A, 52(1), 151–166. https://doi.org/10.1007/s11661-020-06000-y
  • 21. Najm, S.M., & Paniti, I. (2020). Study on effecting parameters of flat and hemispherical end tools in SPIF of aluminium foils. Tehnicki Vjesnik - Technical Gazette, 27(6), 1844–1849. https://doi.org/10.17559/TV-20190513181910
  • 22. Najm, S.M., & Paniti, I. (2021). Artificial neural network for modeling and investigating the effects of forming tool characteristics on the accuracy and formability of thin aluminum alloy blanks when using SPIF. The International Journal of Advanced Manufacturing Technology, 114(9), 2591–2615. https://doi.org/10.1007/s00170-021-06712-4
  • 23. Najm, S.M., Paniti, I., Trzepieciński, T., Nama, S.A., Viharos, Z.J., & Jacso, A. (2021). Parametric effects of single point incremental forming on hardness of AA1100 aluminium alloy sheets. Materials, 14(23), 7263. https://doi.org/10.3390/ma14237263
  • 24. Naranjo, J., Miguel, V., Martínez, A., Coello, J., Manjabacas, M.C., & Valera, J. (2017). Influence of temperature on alloy Ti6Al4V formability during the warm SPIF process. Procedia Engineering, 207, 866–871. https://doi.org/10.1016/j.proeng.2017.10.843
  • 25. Oleksik, V., Trzepieciński, T., Szpunar, M., Chodoła, Ł., Ficek, D., & Szczęsny, I. (2021). Single-point incremental forming of titanium and titanium alloy sheets. Materials, 14(21), 6372. https://doi.org/10.3390/ma14216372
  • 26. Patel, D., & Gandhi, A. (2022). A review article on process parameters affecting Incremental Sheet Forming (ISF). Materials Today: Proceedings, 63, 368–375. https://doi.org/10.1016/j.matpr.2022.03.208
  • 27. Pepelnjak, T., Sevšek, L., Lužanin, O., & Milutinović, M. (2022). Finite element simplifications and simulation reliability in single point incremental forming. Materials, 15(10), 3707. https://doi.org/10.3390/ma15103707
  • 28. Popp, M., Rusu, G., Racz, S.G., & Oleksik, V. (2021). Common defects of parts manufactured through single point incremental forming. MATEC Web of Conferences, 343, 04007. https://doi.org/10.1051/matecconf/202134304007
  • 29. Racz, S.G., Breaz, R.E., Tera, M., Gîrjob, C., Biriș, C., Chicea, A.L., & Bologa, O. (2018). Incremental forming of titanium Ti6Al4V alloy for cranioplasty plates—decision-making process and technological approaches. Metals, 8(8), 626. https://doi.org/10.3390/met8080626
  • 30. Rosca, N., Oleksik, M., & Oleksik, V. (2021). Experimental study regarding PA and PE sheets on single point incremental forming process. MATEC Web of Conferences, 343, 03009. https://doi.org/10.1051/matecconf/202134303009
  • 31. Saidi, B., Boulila, A., Ayadi, M., & Nasri, R. (2015). Prediction of the friction coefficient of the incremental sheet forming SPIF. Proceedings of the 6th International Congress Design and Modelling of Mechanical Systems CMSM’2015, Hammamet, 23-25 March 2015, Tunisia, pp. 1–2.
  • 32. Sbayti, M., Bahloul, R., & Belhadjsalah, H. (2020). Efficiency of optimization algorithms on the adjustment of process pa-rameters for geometric accuracy enhancement of denture plate in single point incremental sheet forming. Neural Com-puting and Applications, 32(13), 8829–8846. https://doi.org/10.1007/s00521-019-04354-y
  • 33. Sbayti, M., Ghiotti, A., Bahloul, R., BelhadjSalah, H., & Bruschi, S. (2022). Effective strategies of metamodeling and opti-mization of hot incremental sheet forming process of Ti6Al4Vartificial hip joint component. Journal of Computational Science, 60, 101595. https://doi.org/10.1016/j.jocs.2022.101595
  • 34. Shin, J. (2021). Investigation of Incremental Sheet Forming (ISF) using Advanced Numerical and Analytical Approaches. PhD Thesis, University of Michigan, MI, USA. https://doi.org/10.7302/2657
  • 35. Szewczyk, M., & Szwajka, K. (2023). Assessment of the tribological performance of bio-based lubricants using analysis of variance. Advances in Mechanical and Materials Engineering, 40, 31–38. https://doi.org/10.7862/rm.2023.4
  • 36. Szpunar, M., Ostrowski, R., Trzepieciński, T., & Kaščák, Ľ. (2021). Central composite design optimisation in single point incremental forming of truncated cones from commercially pure titanium Grade 2 sheet metals. Materials, 14(13), 3634. https://doi.org/10.3390/ma14133634
  • 37. Titanium. (2023). Titanium Ti-6Al-4V (Grade 5), Annealed. [WWW Document]. Retrieved from: https://www.matweb.com/search/DataSheet.aspx?MatGUID=a0655d261898456b958e5f825ae85390&ckck=1 (ac-cessed on 23 July 2023).
  • 38. Trzepieciński, T., Szpunar, M., Dzierwa, A., & Żaba, K. (2022a). Investigation of surface roughness in incremental sheet forming of conical drawpieces from pure titanium sheets. Materials, 15(12), 4278. https://doi.org/10.3390/ma15124278
  • 39. Trzepieciński, T., Szpunar, M., & Ostrowski, R. (2022b). Split-Plot I-Optimal design optimisation of combined oil-based and friction stir rotation-assisted heating in SPIF of Ti-6Al-4V titanium alloy sheet under variable oil pressure. Metals, 12(1), 113. https://doi.org/10.3390/met12010113
  • 40. Więckowski, W., Adamus, J., Dyner, M., & Motyka, M. (2023). Tribological aspects of sheet titanium forming. Materials, 16(6), 2224. https://doi.org/10.3390/ma16062224
  • 41. Yoganjaneyulu, G., Vigneshwaran, S., Palanivel, R., Alblawi, A., Rasheed, M. A., & Laubscher, R. F. (2021). Effect of tool rotational speed on the microstructure and associated mechanical properties of incrementally formed commercially pure titanium. Journal of Materials Engineering and Performance, 30(10), 7636–7644. https://doi.org/10.1007/s11665-021-05900-3
  • 42. Zwolak, M., Szpunar, M., Ostrowski, R., & Trzepieciński, T. (2022). Research on forming parameters optimization of incremental sheet forming process for commercially pure titanium Grade 2 sheets. Archives of Metallurgy and Materials, 67(4), 1411–1418. https://doi.org/10.24425/amm.2022.141068
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0c77adb-493e-4dc4-a279-7fdbea96d686
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.