PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Formation of calcite by chemolithoautotrophic bacteria – a new hypothesis, based on microcrystalline cave pisoids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new mechanism, stimulating the precipitation of calcite, is postulated. The supersaturation with respect to carbonate minerals is changed, as a result of CO2consumption by chemolithoautotrophic, hydrogen-oxidizing bacteria. This mechanism controls the growth of atypical, microcrystalline cave pisoids in Perlová Cave, in Slovakia. The pisoids grow under calm conditions in rimstone pools, where they are bathed continuously in stagnant water. The water is supersaturated, with respect to calcite and aragonite. The bacteria inhabit the outer parts of the pisoids, covered by biofilms. The biofilm influences the supply of the Ca2+ ion, slows down the precipitation rate, and favors calcite precipitation over that of aragonite. The calcite initially precipitates as bacterial replicas, which further act as seeds for the growing calcite crystals. This process leads to the obliteration of the primary, bacterial fabrics. Since hydrogen-oxidizing bacteria occur in a wide spectrum of natural habitats, the mechanism of calcification, postulated above, also may operate in other environments.
Rocznik
Strony
361–--369
Opis fizyczny
Bibliogr. 68 poz., rys., tab., wykr.
Twórcy
  • Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 31-063 Kraków, Poland
autor
  • Department of Microbiology, Agricultural University of Cracow, Al. Mickiewicza 24/28, 31-120 Kraków, Poland
autor
  • Faculty of Geology, Geophysics and Environment Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Aguiar, P., Beveridge, T. J. & Reysenbach, A.-L., 2004. Sulfurihydrogenibium azorense, sp. nov., a thermophilic hydrogenoxidizing microaerophile from terresirial hot springs in the Azores. International Journal of Systematic and Evolutionary Microbiology, 54: 33-39.
  • 2. Aragno, M. & Schlegel, H. G., 1991. The mesophilic hydrogen-oxidizing (knallgas) bacteria, In: Balows, A., Trüper, H.
  • 3. Dworkin, M., Harder, W. & Schleifer, K.-H. (eds), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, Volume III. Springer, New York, pp. 344-384.
  • 4. Arp, G., Bisset, A., Brinkmann, N., Cousin, S., de Beer, D., Friedl, T., Mohr, K. I., Neu, T. R., Reimer, A., Shiraishi, F., Stackebrandt, E. & Zippel, B., 2010. Tufa-forming biofilms of German streams: microorganisms, exopolymers, hydrochemistry and calcification. In: Pedley, H. M. & Rogerson M. (eds), Tufas and Speleothems, Unravelling the Microbial and Physical Controls. Geological Society Special Publication, 336: 83-118.
  • 5. Arp, G., Reimer, A. & Reitner, J., 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292: 1701-1704.
  • 6. Arp, G., Thiel, V., Reimer, A., Michaelis, W. & Reitner, J., 1999. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sedimentary Geology, 126: 159-176.
  • 7. Atlas, R. M. & Parks, L. C., 1997. Handbook of Microbiological Media. CRC Press, Boca Raton, 1706 pp.
  • 8. Bae, S., Kwak, K., Kim, S., Chung, S. & Igarashi, Y., 2001. Isolation and characterization of CO2-fixing hydrogen-oxidizing marine bacteria. Journal of Bioscience and Bioengineering, 91: 442-448.
  • 9. Barton, H. A. & Northup, D. E., 2007. Geomicrobiology in cave environments: past, current and future perspectives. Journal of Cave and Karst Studies, 69: 163-178.
  • 10. Baskar, S., Baskar, R. & Routh, J., 2011. Biogenic evtdences of moonmilk deposition in the Mawmluh Cave, Meghalaya, India. Geomicrobiology Journal, 28: 252-265.
  • 11. Bindschedler, S., Millière, L., Cailleau, G., Job, D. & Verrecchia, E. P., 2010. Calcitic nannofibres in soils and caves: a putative fungal contribution to carbonatogenesis. In: Pedley, H. M. & Rogerson M. (eds), Tufas and Speleothems. Unravelling the Microbial and Physical Controls., Geological Society Special Publication, 336: 225-238.
  • 12. Blyth, A. & Frisia, S., 2008. Molecular evidence for bacterial mediation of calcite formation in cold high-altitude caves. Geomicrobiology Journal, 25: 101-111.
  • 13. Borsato, A., Frisia, S., Jones, B. & van der Borg, K., 2000. Calcite moonmilk: crystal morphology and environment of formation in caves in the Italian Alps. Journal of Sedimentary Research, 70: 1179-1190.
  • 14. Boquet, E., Boronat, A. & Ramos-Cormenzana, A., 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature, 246: 527-529.
  • 15. Braissant, O., Cailleau, G., Dupraz, C. & Verrecchia, E. P., 2003. Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino-acids. Journal of Sedimentary Research, 73: 485-490.
  • 16. Braissant, O., Cailleau, G., Dupraz, C. & Verrecchia, E. P., 2004. Biologically induced mineralization in the tree Milicia excelsa (Moraceae): its causes and consequences to the environment. Geobiology, 2: 59-66.
  • 17. Buczynski, C. & Chafetz, H. S., 1991. Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy. Journal of Sedimentary Petrology, 61: 226-233.
  • 18. Buhmann, D. & Dreybrodt, W. 1985. The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas. 1. Open system. Chemical Geology, 48: 189-211.
  • 19. Cañaveras, J. C., Cuezva, S., Sanchez-Moral, S., Lario, J., Laiz, L., Gonzalez, J. M. & Saiz-Jimenez, C., 2006. On the origin of fiber calcite crystals in moonmilk depostts. Naturwissenschaften, 93: 27-32.
  • 20. Castanier, S., Le Métayer-Levrel, G. & Perthuisot, J.-P., 2000. Bacterial roles in the precipitation of carbonate minerals. In: Riding, R. E. & Awramik, S. M. (eds), Microbial Sediments. Springer, Berlin, pp. 32-39.
  • 21. Decho, A. D., 2000. Exopolymer microdomains as a structuring agent for heterogeneity within microbial mates. In: Riding, R. E. & Awramik, S. M. (eds), Microbial Sediments. Springer, Berlin, pp. 9-15.
  • 22. Défarge, Ch., Trichet, J., Jaunet, A.-M., Robert, M., Tribble, J. & Sansone, F. J., 1996. Texture of microbial sediments revealedby cryo-scanning electron microscopy. Journal of Sedimentary Petrology, 66: 935-948.
  • 23. Dupraz, Ch., Reid, R. P., Braissant, O., Decho, A. W., Norman, A. S. & Visscher, P. T., 2009. Process of carbonate precipitation in modern microbial mat. Earth-Science Reviews, 96: 141-162.
  • 24. Ehrlich, H. L., 1996. Geomicrobiology. Marcel Dekker, New York, 719 pp.
  • 25. Ehrlich, H. L., 1999. Microbes as geological agents: their role in mineral formation. GeomicrobiologyJournal, 16: 135-153.
  • 26. Frisia, S., Borsato, A., Fairchild, I. J. & McDermott, F., 2000. Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and southwestern Ireland. Journal of Sedimentary Research, 70: 1183-1196.
  • 27. Gonzalez, L. A., Carpenter, S. J. & Lohmann, K. C., 1992. Inorganic calcite morphology: roles of fluid chemistry and fluid flow. Journal of Sedimentary Petrology, 62: 382-399.
  • 28. Gradzinski, M., 2001. Role of bacteria in the growth of cave pearls. In: Proceedings of the 13th International Congress of Speleology, Brasilia. Union International de Spéléologie, Brazil. [4 pages in CD].
  • 29. Gradzinski, M., 2003. Bacterial influence on speleothem oxygen isotope composition: An example based on cave pisoids from Perlova Cave (Slovakia). Geologica Carpathica, 54: 199-204.
  • 30. Gradzinski, M., Chmiel, M. J., Lewandowska, A. & Michalska- Kasperkiewicz, B., 2010. Siliciclastic microstromatolites in a sandstone cave: Role of trapping and binding of detrital particles in formation of cave deposits. Annales Societatis Geologorum Poloniae, 80: 303-314.
  • 31. Gradzinski, M., Szulc, J. & Smyk, B., 1997. Microbial agents of moonmilk calcification. In: Jeannin, P.-Y. (ed.), Proceedings of the 12th International Congress of Speleology, Volume 1. International Union of Speleology, Basel, pp. 275-278.
  • 32. Gradzinski, R. & Radomski, A., 1967. Pisoliths from Cuban caves. Rocznik Polskiego Towarzystwa Geologicznego, 37: 243-265.
  • 33. Guo, L. & Riding, R., 1994. Origin and diagenesis of Quaternary shrub facies, Rapolane Terme, central Italy. Sedimentology, 41: 499-520.
  • 34. Hill, C. & Forti, P., 1997. Cave Minerals of the World. National Speleological Society, Huntsville, pp. 1-463.
  • 35. Holubek, P. & Klesken, J., 1993. Objavy v Perlovej jaskyni. Spra- vodaj Slovenskej Speleologickej Spolocnosti, 23: 20-22. [In Slovak].
  • 36. Holt, J. G., ed., 1989. Bergey’s Manual of Systematic Bacteriology. Volume 1-4. Williams & Wilkins, Baltimore, 2648 pp.
  • 37. Holt, J. G., ed., 1994. Bergey’s Manual of Determinative Bacteriology. Williams & Wilkins, Baltimore, 787 pp.
  • 38. Jones, B., 2001. Microbial activity in caves A geological perspective. Geomicrobiology Journal, 18: 345-357.
  • 39. Jones, B., 2009. Cave pearls - the integrated product of abiogenic and biogenic processes. Journal of Sedimentary Research, 79: 689-710.
  • 40. Jones, B., 2010. Microbes in caves: agents of calcite corrosion and precipitation. In: Pedley, H. M. & Rogerson M. (eds), Tufas and Speleothems. Unravelling the Microbial and Physical Controls., Geological Society Special Publication, 336: 7-30.
  • 41. Jones, B., 2011a. Biogenicity of terrestrial oncoids formed in soil pockets, Cayman Brac, British West Indies. Sedimentary Geology, 236: 95-108.
  • 42. Jones, B., 2011b. Stalactite growth mediated by biofilms: Example from Nani Cave, Cayman Brac, British West Indies. Journal of Sedimentary Research, 81: 322-338.
  • 43. Jones, B. & Kahle, C. F., 1986. Dendritic calcite crystals formed by calcification of algal filaments in a vadose environments. Journal of Sedimentary Petrology, 56: 217-227.
  • 44. Jones, B. & Kahle, C. F., 1993. Morphology, relationship, and origin of fiber and dendrite calcite crystals. Journal of Sedimentary Petrology, 63: 1018-1031.
  • 45. Jones, B. & MacDonald, R. W., 1989. Micro-organisms and crystal fabrics in cave pisoliths from Grand Cayman, British West Indies. Journal of Sedimentary Petrology, 59: 387-396.
  • 46. Jones, D. & Keddie, R. M., 1991. The genus Arthrobacter. In: Balows, A., Truper, H .G., Dworkin, M., Harder, W., & Schleifer, K.-H. (eds), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, VolumeII. Springer, New York, pp. 1283-1299
  • 47. Krumbein, W. E., 1979. Calcification by bacteria and algae. In: Trudinger, P. A. & Swaine, D.J. (eds) Biogeochimical Cycling of Mineral-Forming Elements. Elsevier, Amsterdam, pp. 47-68.
  • 48. Loisy, C., Verrecchia, E. P. & Dufour, P., 1999. Microbial origin for pedogenic micrite associated with a carbonate paleosoil (Champagne, France). Sedimentary Geology, 126: 193-204.
  • 49. Mahef, M., 1968. The Me sozoic. In: Mahef, M. & Buday, T. (eds), Regional Geology of Czechoslovakia, Part II, The West Carpathians. Geological Survey of Czechoslovakia, Academia, Praha, pp. 138-143.
  • 50. Melim, L. A., Boston, P. J., Northup, D. E., Spilde, M. N. & Queen, J. M., 2001. Evidence for microbial involvement in pool finger precipitation, Hidden Cave, New Mexico. Geomicrobiology Journal, 18: 311-329.
  • 51. Melim, L. A. & Spilde, M. N., 2011. Rapid growth and recrystallization of cave pearls in an underground mine. Journal of Sedimentary Research, 81: 775-786.
  • 52. Monger, H. C., Daugherty, L. A., Lindemann, W. C. & Liddell, C. M., 1991. Microbial precipitation ofpedogenic calcite. Geology, 19: 997-1000.
  • 53. Nader, F. H., 2007. Petrographic and geochemical study on cave pearls from Kanaan Cave (Lebanon). International Journal of Speleology, 36: 39-50.
  • 54. Northup, D. & Lavoie, K. H., 2001. Geomicrobiology of caves: A review. GeomicrobiologyJournal, 18: 199-222.
  • 55. Olszta, M. J., Gajjeraman, S., Kaufman, M. & Gower, L. B., 2004. Nanofibrous calcite synShesized via a soSuSionprecursorsolid mechanism. Chemistry of Materials, 16: 23552362.
  • 56. Parkhurst, D. L. & Appelo, C. A. J., 1999. User’s guide to PHREEQC (version 2) - A computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculation. U.S. Geological Survey Water Resource Investigations Report, 99-4259: 1-326.
  • 57. Pedley, M., 2000. Ambient temperature freshwater microbial tufas. In: Riding, R. E. & Awramik, S. M. (eds), Microbial Sediments. Springer, Berlin, pp. 179-186.
  • 58. Renaut, R. W. & Jones, B., 2000. Microbial precip it ates around continental hot springs and geysers. In: Riding, R. E. & Awramik, S. M. (eds), Microbial Sediments. Springer, Berlin, pp. 187-195.
  • 59. Riding, R., 1991. Classification of microbial carbonates. In: Riding, R. (ed.), Calcareous Algae and Stromatolites. Springer, Berlin, pp. 21-51.
  • 60. Riding, R., 2000. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47: 179-214.
  • 61. Shiraishi, F., Reimer, A., Bissett, A., de Beer, D. & Arp, G., 2008. Microbial effects on biofilm calcification, ambient water chemistry and stable iso tope records in a highly supersaturated setting (Westerhofer Bach, Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 262: 91-106.
  • 62. Simkiss, K., 1986. The processes of biomineralization in lower plants and animals an overview. In: Leadbeater, B. S. C. & Riding, R. (eds), Biomineralization in Lower Plants and Animals. The Systematics Association, Special Volume, 30: 1937.
  • 63. Smyk, B. N. & Ettinger, L., 1963. Recherches sur quelque espèces d’arthrobacter fixatrices d’azote isoles des roches karstiques alpines. Annales de l’Institut Pasteur, 105: 341-348.
  • 64. Szulc, J. & Smyk, B., 1994. Bacterially controlled calcification of freshwater Schizotrix-stromatolites: an example from the Pieniny Mts., Southern Poland. In: Bertrand-Sarfati, J. & Monty, C. (eds), Phanerozoic Stromatolites II. Kluwer, Dordrecht, pp. 31-51.
  • 65. Trichet, J. & Défarge, C., 1995. Non-biologically supported organomineralization. Bulletin de l’Institute Océanographique, Numéro Spécial, 14: 203-236.
  • 66. Verrecchia, E. P. & Verrecchia, K. E., 1994. Needle-fiber calcite: A critical review and a proposed classification. Journal of Sedimentary Research, A64: 650-664.
  • 67. Wiegel, J., 1991, The genus Xanthobacter. In: Balows, A., Trüper, G., Dworkin, M., Harder, W. & Schleifer, K.-H. (eds), The Prokaryotes. A Handbook on the Biology of Bacleria: Ecophysiology, Isolation, Identification, Applications, Volume III. Springer, New York, pp. 2366-2383.
  • 68. Wright, D. T. & Oren, A., 2005. Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time. Geomicrobiology Journal, 22: 27-53.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0c6e42b-4c5c-4349-80f0-c233f29d6037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.