PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Konferencja
4th Jagiellonian Symposium on Advances in Particle Physics and Medicine, Krakow, 10-15 July 2022
Języki publikacji
EN
Abstrakty
EN
In this article, we present the geometrical design and preliminary results of a high sensitivity organspecific Positron Emission Tomography (PET) system dedicated to the study of the human brain. The system, called 4D-PET, will allow accurate imaging of brain studies due to its expected high sensitivity, high 3D spatial resolution and, by including precise photon time of flight (TOF) information, a boosted signal-to-noise ratio (SNR). The 4D-PET system incorporates an innovative detector design based on crystal slabs (semi-monolithic) that enables accurate 3D photon impact positioning (including photon Depth of Interaction (DOI) measurement), while providing a precise determination of the photon arrival time to the detector. The detector includes a novel readout system that reduces the number of detector signals in a ratio of 4:1 thus, alleviating complexity and cost. The analog output signals are fed to the TOFPET2 ASIC (PETsys) for scalability purposes. The present manuscript reports the evaluation of the 4D-PET detector, achieving best values 3D resolution values of < 1,6 mm (pixelated axis), 2.7±0.5 mm (monolithic axis) and 3.4±1.1 (DOI axis) mm; 359 ± 7 ps coincidence time resolution (CTR); 10.2±1.5 % energy resolution; and sensitivity of 16.2% at the center of the scanner (simulated). Moreover, a comprehensive description of the 4D-PET architecture (that includes 320 detectors), some pictures of its mechanical assembly, and simulations on the expected image quality are provided.
Rocznik
Strony
107--119
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Instituto de Instrumentación para Imagen Molecular (i3M), Centro mixto CSIC - Universitat Politècnica de València, 46022, Valencia, Spain
  • Oncovision, S. A. - Jeronimo de Monsoriu, 92, 46012, Valencia, Spain
  • Instituto de Instrumentación para Imagen Molecular (i3M), Centro mixto CSIC - Universitat Politècnica de València, 46022, Valencia, Spain
  • Oncovision, S. A. - Jeronimo de Monsoriu, 92, 46012, Valencia, Spain
autor
  • Instituto de Instrumentación para Imagen Molecular (i3M), Centro mixto CSIC - Universitat Politècnica de València, 46022, Valencia, Spain
autor
  • Oncovision, S. A. - Jeronimo de Monsoriu, 92, 46012, Valencia, Spain
  • Instituto de Instrumentación para Imagen Molecular (i3M), Centro mixto CSIC - Universitat Politècnica de València, 46022, Valencia, Spain
  • Instituto de Instrumentación para Imagen Molecular (i3M), Centro mixto CSIC - Universitat Politècnica de València, 46022, Valencia, Spain
autor
  • Oncovision, S. A. - Jeronimo de Monsoriu, 92, 46012, Valencia, Spain
  • Oncovision, S. A. - Jeronimo de Monsoriu, 92, 46012, Valencia, Spain
autor
  • Instituto de Instrumentación para Imagen Molecular (i3M), Centro mixto CSIC - Universitat Politècnica de València, 46022, Valencia, Spain
  • Instituto de Instrumentación para Imagen Molecular (i3M), Centro mixto CSIC - Universitat Politècnica de València, 46022, Valencia, Spain
  • Instituto de Instrumentación para Imagen Molecular (i3M), Centro mixto CSIC - Universitat Politècnica de València, 46022, Valencia, Spain
  • Instituto de Instrumentación para Imagen Molecular (i3M), Centro mixto CSIC - Universitat Politècnica de València, 46022, Valencia, Spain
  • Instituto de Instrumentación para Imagen Molecular (i3M), Centro mixto CSIC - Universitat Politècnica de València, 46022, Valencia, Spain
  • Instituto de Instrumentación para Imagen Molecular (i3M), Centro mixto CSIC - Universitat Politècnica de València, 46022, Valencia, Spain
autor
  • Nuclear Medicine and Molecular Imaging Department, Centre Hospitalier Universitaire Vaudois (CHUV) - Lausanne, Switzerland
  • Instituto de Instrumentación para Imagen Molecular (i3M), Centro mixto CSIC - Universitat Politècnica de València, Instituto i3M - UPV, Edificio 8B, 46022, Valencia, Spain
Bibliografia
  • [1] Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA. 2000;97:9226-9233.
  • [2] Moliner L, Rodríguez-Álvarez MJ, Catret JV, González A, Ilisie V, Benlloch JM, Performance Evaluation of CareMiBrain dedicated brain PET and Comparison with the whole-body and dedicated brain PET systems. Sci Rep. 2019 Oct 29;9(1):15484. doi: 10.1038/s41598-019-51898-z.
  • [3] González AJ, Sánchez F, Benlloch JM. Organ-dedicated molecular imaging systems. IEEE Trans. Radiat. Plasma Med. Sci., vol. 2, no. 5, pp. 388-403, Sep. 2018.
  • [4] Hsu DFC, Freese DL, Reynolds PD, Innes DR, Levin CS. Design and performance of a 1 mm3 resolution clinical PET system comprising 3-D position sensitive scintillation detectors. IEEE Trans. Med. Imag., vol. 37, no. 4, pp. 1058-1066, Apr. 2018.
  • [5] Miyaoka RS, Hunter WCJ, DeWitt DQ, Pierce L. Performance characteristics for a low cost, dual sided, position sensitive sparse sensor (DS-PS3) PET detector with depth of interaction positioning. Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf.
  • [6] Benlloch JM, Gonzalez AJ, Pani R, Preziosi E, Jackson C, Murphy J, BArbera J, Correcher C, et al. The MINDVIEW project: First results. Eur. Psychiatry, vol. 50, pp. 21-27, Apr. 2018.
  • [7] Marti-Climent JM, Prieto E, Moran V, Sancho L, Rodriguez-Fraile M, Arbizu J, Garcia-Velloso MJ, Ritcher JA. Effective dose estimation for oncological and neurological PET/CT procedures JNMMI Research. vol. 7(37), April 2017.
  • [8] Brownell GL, Sweet WH. Localization of brain tumors with positron emitters. Nucleonics, vol. 157, no. 14, pp. 1183–1188, Apr 1955.
  • [9] Zaidi H, Montandon ML. The New Challenges of Brain PET Imaging Technology. Curr. Med. Imaging. vol. 2(1), pp. 3-13, 2006.
  • [10] Conti M, Bendriem B. The new opportunities for high time resolution clinical TOF PET. Clinic. Trans. Imaging. vol. 7, pp. 139-147, 2019.
  • [11] Gonzalez-Montoro A, Aguilar A, Cañizares G, Conde P, Hernandez L, et al. Performance study of a large monolithic LYSO PET detector with accurate photon DOI using retroreflector layers. IEEE Trans. Radiat. Plasma Med. Sci., vol. 1, no. 3, pp. 229-237, May 2017.
  • [12] LaBella A, Petersen E, Cao X, Zeng X, Zhao W, Goldan A. 36-to-1 multiplexing with Prism-PET for high resolution TOF-DOI PET. J Nucl Med. 2021; 62(suppl 1):38.
  • [13] Majewski S. Perspectives of brain imaging with PET systems. Bio-Algorithms and Med-Systems 17:269-291, 2021.
  • [14] Gonzalez-Montoro A, Ullah MN, Levin CS. Advances in detector instrumentation for PET. J. Nucl. Med. vol. 63(8), pp. 1138-1144, Aug 2022.
  • [15] Gonzalez-Montoro A, Pourashraf S, Lee MS, Cates JW, Levin CS. Study of optical reflectors for a 100ps coincidence time resolution TOF-PET detector design. Biomed Phys Eng Express. 2021;7:65008.
  • [16] Bizarri G. Scintillation mechanisms of inorganic materials: from crystal characteristics to scintillation properties. J Cryst Growth. 2010;312:1213-1215.
  • [17] Zhang X, Wang X, Ren N, Kuang Z, Deng X, Fu X, et al., Performance of a SiPM based semi-monolithic scintillator PET detector. Phys. Med. Biol., vol. 62, no. 19, pp. 7889-7904, Sep. 2017.
  • [18] Cucarella N, Lamprou E, Valladares C, Benlloch JM, Gonzalez AJ. Timing evaluation of a PET detector block based on semi-monolithic LYSO crystals. Med. Phys. vol 48(12), pp. 8010-8023, Dec 2021.
  • [19] Schaart DR, Charbon E, Frach T, Schulz V. Advances in digital SiPMs and their application in biomedical imaging. Nucl Instrum Methods Phys Res A. 2016;809: 31-52.
  • [20] Gundacker S. Heering A. The silicon photomultiplier: fundamentals and applications of a modern solid-state photon detector. Phys. Med. Biol. 65 17TR01, 2020.
  • [21] Lecoq P, Gundacker S. SiPM applications in positron emission tomography: toward ultimate PET time-off light resolution. The European Physical Journal Plus. vol. 136, aticle number: 292, 2021.
  • [22] Berg E, Cherry SR. Innovations in instrumentation for positron emission tomography. Semin Nucl Med. 2018;48:311-331.
  • [23] Alessio AM, Stearns CW, Tong S, Ross SG, Kohlmyer S, Ganin A, Kinahan PE. Application and Evaluation of a Measured Spatially Variant System Model for PET Image Reconstruction. IEEE Trans. Med. Imaging. vol. 29(3), pp. 938-949, March 2010.
  • [24] Benlloch JM, Pavon N, Barbera J, Gonzalez AJ. Topología de red de lectura para dispositivos de tomografía de emisión de positrones con tiempo de vuelo. P202130959 - 12/10/2021. https://aplicat.upv.es/exploraupv/fichatecnologia/patente_software/37411.
  • [25] Bugalho R, Di Francesco A, Ferramacho L, Leong C, Niknejad T, Oliveira L, Rolo M, Silva JC, Silveira M. Experimental characterization of the TOFPET2 ASIC. JINST 14 P03029, 2019.
  • [26] Herbert G, Duffau H. Revisiting the Functional Anatomy of the Human Brain: Toward a MetaNetworking Theory of Cerebral Functions. Physiolo. Reviews. vol. 100(3), pp. 1181-1228, 2020.
  • [27] Moskal P, Stepien Ewa. Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators. PET Clin. 5(4):439-452, 2020.
  • [28] Moskal P, Kowalski P, Shopa R Y, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner - an economic total-body PET from plastic scintillators. Phys. Med. Biol. 67 175015, 2021.
  • [29] Pawel P, Dulski K, Chug N, et al., Positronium imaging with the novel multiphoton PET scanner. Sci Adv; 7(42), 2021.
  • [30] Levin CS. Promising Detector Concepts to Advance Coincidence Time Resolution for Time-of-Flight Positron Emission Tomography. Acta. Phys. Polon. A 142:422, 2022.
  • [31] Gonzalez-Montoro A, Gonzalez AJ, Pourashraf S, et al. Evolution of PET detectors and event positioning algorithms using monolithic scintillation crystals. IEEE Trans Radiat Plasma Med Sci; 5:282-305, 2021.
  • [32] Müller F, Naunheim S, Kuhl Y, Schug D, Solf T, Schulz V. A Semi-Monolithic Detector providing intrinsic DOI-encoding and sub-200 ps CRT TOF-Capabilities for Clinical PET Applications. Inst. Det; Med. Phys. arXiv:2203.02535, 2022.
  • [33] 3MTM Enhanced Specular Reflector Films (ESR). Technical data, 2020. https://multimedia.3m.com/mws/media/1245089O/3menhanced-specular-reflector-films-3m-esr-tech-datasheet.pdf.
  • [34] BC-630 Silicone Optical Grease, Saint Gobain datasheet. https://www.crystals.saintgobain.com/radiation-detection-scintillators/assemblymaterials.
  • [35] MPPC® (Multi-pixel photon counter), S13360 Series, Hamamatsu Photonics. https://www.hamamatsu.com.
  • [36] Python 3.0 user guide. https://www.python.org/doc/
  • [37] Freire M, Echegoyen S, Gonzalez-Montoro A, Sanchez F, Gonzalez AJ. Performance Evaluation of Sideby-Side Optically Coupled Monolithic LYSO Crystals. Med. Phys. vol. 49(8), pp. 5616-5626, 2022.
  • [38] Jan S, Santin G, Strul D, Steaelens S, Assie K, Autret D, Avner S, Barbier R, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. vol. 49(19), pp. 4543-61, 7 Oct 2004.
  • [39] NEMA NU 4-2008. Performance measurements of Small Animal Positron Emission Tomographs. (Association, National Electrical Manufacturers, 2008).
  • [40] Moliner L, Correcher C, Gonzalez AJ, Conde P, Hernandez L, Orero A, Rodriguez-Alvarez MJ, Sanchez F, Soriano A, Vidal LF, Benlloch JM. Implementation and analysis of list mode algorithm using tubes of response on a dedicated brain and breast PET. Nucl Instrum Methods Phys Res A. vol 702, pp. 129-132. 2013.
  • [41] Herzog H, Tellmann L, Marx B, Rota Kops E, Scheins J, Weirich C, Shah NJ. Performance Tests and Preliminary Results of the 3TMR-BrainPET Scanner Installed at the Forschungszentrum Jülich. WC 2009, IFMBE Proceedings 25/II, pp. 677-680, 2009.
  • [42] Van Vonderen K, Leonard S, Linscheid L, Gruchot M, Dillehay G. Image quality assessment of Hoffman brain phantom scans performed on a next generation and previous generation PET/CT scanners. Image quality assessment of Hoffman brain phantom scans performed on a next generation and previous generation PET/CT scanners. J. Nucl. Med. vol. 60(1) 2052. May 2019.
  • [43] Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys. 2020;7:35.
  • [44] Spencer BA, Berg E, Schmall JP, Omidvari N, Leung EK, et al. Performance Evaluation of the uEXPLORER Total-Body PET/CT Scanner Based on NEMA NU 2-2018 with Additional Tests to Characterize PET Scanners with a Long Axial Field of View. J. Nucl. Med. vol. 1(62), pp. 861-870. Jun 2021.
  • [45] Karlberg AM, Sæther O, Eikenes L, Goa PE. Quantitative comparison of PET performance-Siemens Biograph mCT and mMR. EJNMMI Phys. vol. 3(1): 5. Dec 2016.
  • [46] Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J. Nucl. Med. vol. 48(3), pp. 471-80. Mar 2007.
  • [47] Caribe PRRV, Koole M, D’asseler Y, Deller TW, Van Laere K, Vandenberghe S. NEMA NU 2-2007 performance characteristics of GE Signa integrated PET/MR for different PET isotopes. EJNMMI Physics. vol. 6(11). July 2019.
  • [48] Gaudin E, Toussaint M, Thibaudeau C, Fontaine R, Normandin M, Petibon Y, Ouyang J, El Fakhri G, Lecomte R. Simulation Studies of the SAVANT High Resolution Dedicated Brain PET Scanner Using Individually Coupled APD Detectors and DOI Encoding. J. Nucl. Med. vol. 60(1), pp. 531. May 2019.
  • [49] Gonzalez AJ, Gonazlez-Montoro A, Aguilar A, et al., “Initial results of the MINDView PET insert inside the 3T mMR. IEEE Trans. Radiat. Plasma Med. Sci., vol. 3, no. 3, pp. 343-351, May 2019.
  • [50] Ceccarini J, Liu H, Van Laere K, Morris ED, Sander CY. Methods for Quantifying Neurotransmitter Dynamics in the Living Brain With PET Imaging. Front. Physiol., 10.3389. July 2020.
  • [51] Yang J, Hu C, Guo N, Dutta J, Vaina LM, Johnson KA, Sepulcre J, El Fakhri G, Li Q. Partial volume correction for PET quantification and its impact on brain network in Alzheimer’s disease. Scientific Reports. vol. 7, article number: 13035. Oct 2017.
Uwagi
Opublikowano przez Sciendo. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0c18364-a374-4c28-8aaf-64932bc38089
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.