PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer modelling of the dynamic system «porous medium – moisture – chemical substance» in the case of soil desalinization by rainfalls (a three-dimensional case)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie komputerowe systemu dynamicznego«ośrodek porowaty – wilgoć – substancja chemiczna» na przykładzie wpływu opadów na odsalanie gruntu (przypadek przestrzenny)
Języki publikacji
EN
Abstrakty
EN
Mathematical model of moisture transport taking into account variable porosity has been investigated numerically. Changes in porosity are caused by dissolution of chemical substances associated with soil skeleton. The finite element solution of the problem in the case of regular rainfall has been found. Program realization of the corresponding algorithms has been implemented in FreeFem++ computational environment. Numerical experiments have been carried out and the impact of rainfall on desalinization of soil with high concentration of salts in the solid component has been determined.
PL
Numerycznie badano model matematyczny transportu wilgoci o zmiennej porowatości. Zmiany porowatości są spowodowane rozpuszczaniem substancji chemicznych związanych ze szkieletem gruntu. Znaleziono numeryczne rozwiązanie problemu w przypadku regularnych opadów. Programowa realizacja odpowiednich algorytmów została zaimplementowana w środowisku obliczeniowym FreeFem++. Przeprowadzono eksperymenty numeryczne i określono wpływ opadów na odsalanie gruntu przy wysokim stężeniu soli w twardym komponencie.
Twórcy
  • National university of water and environmental engineering – Department of applied mathematics 11 Soborna st., 33028, Rivne, Ukraine
  • National university of water and environmental engineering – Department of applied mathematics 11 Soborna st., 33028, Rivne, Ukraine
Bibliografia
  • [1] Abbaspour H., Sorafa M., Daneshfaraz R. et al., 2012. Study and comparison the efficiency of Mualem-Van Genuchten and Brooks-Corey models in predictiny unsaturated hydraulic conductivity in compacted soils. Journal of Civil Engineering and Urbanism 2(2), 56–62.
  • [2] Hecht F., Auliac S., Pironneau O. et al., 2018. FreeFem++. Third Edition. Laboratoire Jacques-Louis Lions, Universite Pierre et Marie Curieх, Paris. http://www.freefem.org/ff++/ftp/freefem++doc.pdf.
  • [3] Herus V.A., Ivanchuk N.V., Martyniuk P.M., 2018. A System Approach to Mathematical and Computer Modeling of Geomigration Processes Using Freefem++ and Parallelization of Computations. Cybernetics and System Analysis 54(2), 284–294.
  • [4] Herus V., Martyniuk P., Stepanchenko O., Tsvetkova T., 2017. Numerical modeling of a system of interrelated consolidation and mechanical-chemical suffusion processes in heterogenic porous media. International Journal of Pure and Applied Mathematics 116(4), 1043–1056.
  • [5] Ivanchuk N., Martynyuk P., Tsvetkova T., Michuta O., 2017. Mathematical modeling and computer simulation of the filtration processes in earth dams. Eastern-European Journal of Enterprise Technologies 2(6), 63–69.
  • [6] Jacques D., Simunek J., Mallants D., van Genuchten M.Th., 2008. Modeling coupled water flow, solute transport and geochemical reactions affecting heavy metal migration in a podzol soil. Geoderma 145(3-4), 449–461.
  • [7] Martyniuk P.M., Kuzlo M.T., Matus S.K, Tsvietkova T.P., 2017. Mathematical model of nonisothermal moisture transference in the form of water and vapor in soils in the case of chemical internal erosion. Far East Journal of Mathematical Sciences 102(12), 3211–3221.
  • [8] Massman W.J., 2012. Modeling soil heating and moisture transport under extreme conditions: Forest fires and slash pile burns. Water Resources Research 48(10), 1–12.
  • [9] Saifadeen A., Gladneyva R., 2012. Modeling of solute transport in the unsaturated zone using HYDRUS-1D. Division of Water Resources Engineering, Lund University. https://lup.lub.lu.se/student-papers/search/publication/3051081
  • [10] Simion A.I., Grigoras C.-G., Rosu A.-M., Gavrila L., 2015. Mathematical modeling of density and viscosity of NaCl aqueous solutions. Journal of Agroalimentary Processes and Technologies 21(1), 41–52.
  • [11] Stroosnijder L., 1987. Soil evaporation: test of a practical approach under semiarid conditions. Netherlands Journal of Agricultural Science 35, 417–426.
  • [12] Shao W., Su Y., Langhammer J., 2017. Simulations of coupled non-isothermal soil moisture transport and evaporation fluxes in a forest area. Journal of Hydrology and Hydromechanics 65(4), 410–425.
  • [13] Van Dam J.C., Hyugen J., Wesseling J.G. et al., 1997. Theory of SWAP version 2.0. Simulation of water flow, solute transport and plant growth in the Soil-Water-Atmosphere-Plant environment. Wageningen Agricultural University and DLO Winand Staring Centre,
  • [14] Verigin N.N. et al., 1977. Geodynamical, physical and chemical properties of rocks. Moscow, Nedra (in Russian).
  • [15] Verigin N.N. et al., 1979. Methods of prediction of soil and groundwater solute regime. Moscow, Kolos (in Russian).
  • [16] Vlasyuk A.P., Tsvetkova T.P., 2015. Mathematical simulation of the transport of salt in the case of filtration and moisture transfer in saturated-unsaturated soils in a moistening regime. Journal of Engineering Physics and Thermophysics 88(5), 1062–1073.
  • [17] Zhang M., McSaveney M.J., 2018. Is air pollution causing landslides in China? Earth and Planetary Science Letters 481, 284–289.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0bd2b1c-0abc-41ac-a886-566c4d0d06ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.