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Summary. Mathematical model of moisture transport taking into account variable 
porosity has been investigated numerically. Changes in porosity are caused by 
dissolution of chemical substances associated with soil skeleton. The finite ele-
ment solution of the problem in the case of regular rainfall has been found. Pro-
gram realization of the corresponding algorithms has been implemented in 
FreeFem++ computational environment. Numerical experiments have been car-
ried out and the impact of rainfall on desalinization of soil with high concentration 
of salts in the solid component has been determined. 
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1.  INTRODUCTION 

Computer and mathematical modelling of soil moisture transport processes is an 
essential part of various applied problems. For example, it is used in the construction of 
hydraulic structures, evaluating strength of potential slide soils, crop growth etc. 

The difficulty of soil water flow modelling lies in the fact it is influenced by a con-
siderable number of another factors and processes. Diffusion and transport of solutes, 
solute transfer between the phases of the soil, heat transport, net radiation, precipitation 
dynamics, plant growth, root water uptake, soil erosion by surface and underground 
waters are some of them [9]. They cause changes in water content rate and soil proper-
ties, which, in their own turn, influence mentioned processes. For instance, porosity 
depends greatly on soil salt content and solute transport dynamics; hydraulic conduc-
tivity is influenced by temperature, chemical content and soil moisture [6]. These de-
pendencies are complex and often ambiguous, e.g. hysteresis [13]. 

Mathematical modelling of interconnected processes in heterogeneous porous me-
dia is rapidly developing nowadays. For example, mathematical models of mentioned 
processes for the purpose of crop yield forecasting have been built in [13]. In [7, 10] the 
models describing transport of water, vapour and air in the soil under non-isothermal 
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conditions have been proposed. The processes of soil heat and water transport during 
the wildfire have been described in [8]. Modelling of solute transport during the wetting 
of saturated-unsaturated soil has been done in [16]. Also, the impact of anthropogenic 
factors on the water flow is being studied. For instance, in [5] the filtration processes in 
earth dams with regard to solute transport and suffusion have been modelled. The way 
the acid rains can cause landslides has been discussed in [17]. 

The purpose of this paper is a computer modelling of moisture transport in the soil 
with variable porosity. Porosity variation affects water content of porous medium, and 
so impacts moisture indirectly. The model built in this paper is based on the concepts 
presented in the papers [3, 4] and the model proposed in [7], which is also taking into 
account non-isothermal conditions and movement of chemical solutes in the soil. The 
model is specified for the purpose of numerical experiments with a three-dimensional 
problem of soil desalinization by rainfalls. 

Numerical solving of nonlinear boundary value problem for a system of partial dif-
ferential equations in a three-dimensional case requires complex computational algo-
rithms and computer resources. Their program realization is often simplified by using 
premade software packages. The problem described in this paper is solved with the use 
of FreeFem++ integrated development environment. It implements numerical solving of 
boundary value problem with the finite element method (FEM) [2]. 

2.  MATHEMATICAL MODEL  

2.1.  EQUATIONS GOVERNING MOISURE, HEAT AND SOLUTE 
FLOW 

Assume we have a three-dimensional soil layer   1 2 3, ,  x x xX  with vari-
able porosity, consisting of the solid, liquid and gaseous components. In addition, the 
soil is salinized and is under non-isothermal conditions.  

Mathematical model for the given problem is built based on the model proposed in 
[7]. We neglect the flow of vapour and air for the purpose of this problem. Referred to 
equation for the water flow is: 

   min 0,l l
l l

c T s ds
c t T t t dt
      
                   

lq           (1) 

where:  
   – volumetric water content; 
c  – solute concentration in pore water; 
T   – temperature;  

l  – pore water density; 
   – porosity;  

min   – residual (minimum) water content; 

lq   – soil water flux; 
t   – time. 
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To determine the pore water flux we use a modified Darcy-Klute’s law with con-
sideration of osmosis, written as follows:  

3 ,x c T        l l c Tq D K K K  

where: 
D   – soil moisture diffusion coefficient;  

lK  – unsaturated hydraulic conductivity;  

cK   – coefficient of chemical osmosis; 

TK  – coefficient of thermal osmosis. 

Providing we assume porosity  ,N T  to be dependent on the concentration of 

salts in the solid component N  and temperature T , we can rewrite total differential of 
porosity as: 

d N T .
dt t N t T t
       
  
      

Besides, to take into account variable porosity, it is suggested to modify equation 
(1) by changing volumetric water content   to the degree of saturation s  using: 

 

   

min min

min min

,

, .

s
d s ds s s
dt t dt

   
      

  


        

  
Then (1) becomes: 

    

   
  

min min min

min

3 , , t 0.

l l
l

l l

l

c T ss
c t T t t

N Ts s s
t N t T t

x c T

 
     

      



               
                     
        l c T

D

K K K X

       (2) 

Solute transport equation in [7] is written as: 

 1 1

, , t 0,

l l
l l

l
l

c c cc c
c t c

c T NT
T t t

 
 

 






    
                

            

c l

l

D q

q X
       (3) 

where: 
cD  – dispersion coefficient.  

As an equation of solute transport kinetics between the phases of the soil we 
choose a simple formulation, describing adsorption and desorption of dissolved salts 
under Henry isotherm [14, p. 175]: 
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 1 , , t 0,N c N
t

  
   


X         (4) 

where:  
1   – adsorption and desorption velocity constant;  

1    – distribution ratio; 
   – Henry coefficient. 

Heat transfer equation without considering gaseous component is represented as 
follows: 

   
1s s

T l l
d c ( )Tc T T c T ,

t dt
 

 


    
 lq         (5) 

where:  
Tc   – volumetric heat capacity of porous medium; 

s   – density of solid soil particles;  
   – thermal conductivity;  

,s lc c  – heat capacities of solid and liquid soil phases, respectively. 

Let us assume that solid soil phase consist of indissoluble solid particles constitut-
ing soil skeleton and soluble salts. Then: 

    

 

0 0 0

0 0
0 0 0 0

1
1

1

s s
N s s

s
N s s s

d c ( ) d c N c
dt dt
N Tc c c ,
t t T t

 
 

 
 


   

  
   

   

 

and equation (5) becomes: 

 

 

0 0
0 0 0 01

, , t 0,

s
T N s s s

l l

T N Tc T c c c
t t t T t

T c T

 
 

 

              
      lq X

  (6) 

where: 
0   – porosity of indissoluble solid soil skeleton; 

Nc   – density of salt in the solid soil component; 

0 0, cs s   – density and heat capacity of solid soil skeleton.  

2.2. VARIABLE PROCESS PARAMETERS 

2.2.1. Pore water density  

For the purpose of modelling variable pore water density we use the properties of 
NaCl solution, for it is well studied and discussed in the literature. For instance, an 
empirical dependence of solution density on the salt concentration and temperature has 
been proposed in [11] in the form of: 
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 
3 3

1 1

1 1
, .j i

l ij
i j

c T a c T  

 


 
To use this in the model, it is required to find partial derivatives of the density, 

used in equation (2): 

   
3 3 3 3

2 1 1 2

1 2 2 1
1 , 1 .j i j il l

ij ij
i j i j

j a c T i a c T
c T
    

   

 
   

  
 

2.2.2.  Porosity  

According to [7], soil porosity can be determined as follows: 

  0, .
N

NN T 


 
 

We shall assume soil skeleton porosity 0  and salt density N  to be constant. 
Doing so, we get the following partial derivatives of porosity with respect to N  and T : 

1 , 0
NN T

 


    . 

2.2.3.  Unsaturated hydraulic conductivity and diffusion coefficients 

Numerous methods may be found to determine unsaturated soil conductivity and 
diffusion coefficient. In this paper we use a widespread approach called BC (Brooks 
and Corey) model [1]: 

   

     
 

2 3

0
12 0

0 0
min

, , , , , ,

, ,
, , , , , , ,

l

b

K c T s K c T s

K c T
D c T s D c T s D






 

 
 

  







 


              (7) 

where: 
 0 , ,K c T   – coefficient of permeability; 

  – pore-size distribution index; 

b  – pore air pressure. 

2.2.4.  Coefficient of permeability 

Permeability is included as an input parameter in equations (7) for unsaturated soil 
conductivity and diffusion coefficient. It is affected by a great number of physical and chem-
ical factors, including temperature and chemical composition of the pore water [3–5, 16].  
It also depends greatly on the void ratio e , which is related to porosity   as: 
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.
1

e 



  

One of the simplest empirical relations between permeability void ratio is Kozeny-
-Carman equation: 

3
0

0 0
0

1 ,
1

e eK k
e e
 

      
where:  

0 0,k e  – initial values of permeability and void ratio.  

The remaining coefficients (osmosis coefficients, dispersion coefficient, heat ca-
pacity etc.) are considered constant values. 

2.3.  BOUNDARY CONDITIONS 

Assume we have a three-dimensional soil layer as showed on Fig. 1. Upper 
boundary of the layer contacts with the atmocphere. Lower boundaty is impermeable 
for some reason: either lies on a stone foundation or on the clayey soil of low 
permeability.  

 

Fig. 1. Domain of the problem 

Initial conditions for the given problem are as follows: 

               0 0 0 0, , , , , , , , .s t S c t C T t T N t N    X X X X X X X X X     (8) 

On the lower boundary d  we set boundary conditions that correspond to imper-
meability conditions (for moisture and solute flow): 

0, , 0.
d d

d
s c t
n n 

 
   

 
X            (9) 

On the side boundaries 1 2 3 4s       we set symmetry conditions that 
are mathematically similar to the impermeability conditions and have the form of: 

Γ1 
Γ2 

Γ3 
Γ4 

Γup 

Γd 
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0, , 0.
s s s

s
s c T t
n n n  

  
    

  
X   (10) 

The top boundary condition on up  ought to reflect weather conditions. We use  
a simple second type boundary condition that allows for water influx due to precipita-
tion and transpiration. It can be written as: 

     min , , 0,
up

p t up
sD q t q t t
n
 




    


X         (11) 

where: 
 pq t  – moisture net influx due to precipitation for a unit of time; 

 tq t  – transpiration rate for a unit of time.  

Both  pq t  and  tq t  are considered non-negative here. Values   0p iq t   stand 
for days without any rainfall. Actual transpiration rate is determined using a dependence 
proposed in [12]: 

   0 1 ,t t slr slrq t q D D    

where: 
slrD  – number of days since last rain; 

0tq  – effective transpiration rate. 

For the heat transport equation on the top boundary up  Danckwerts boundary 
condition is set. It describes an inflow of clear surface water into the soil, resulting in its 
desalinization [15, p. 52]: 

   1, 0, , 0,
up

up
c n c C t
n 

       
c lD q X          (12) 

where:  
1C  – concentration of the salts in rainwater.  

For the heat transport equation on both upper and lower boundaries we have the 
following first type boundary conditions: 

1T( , t) , T( , t) , , 0,
d up atm upT T t    X X X           (13) 

where:  
1T   – temperature of the underlying soil layer;  

atmT – mean daily atmospheric temperature (in general is a function of time and 
can describe daily temperature variation as well).  
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Therefore, mathematical model of the problem includes equations (2)–(4), (6), ini-
tial conditions (8) and boundary conditions (9)–(13). 

Besides, in this paper two principal cases of the problem are distinguished and 
their solutions compared:  
a) classical moisture transport problem with only the Richard’s water flow equation 

and variable soil conductivity and diffusion coefficient according to (7) taken into 
consideration;  

b) moisture transport problem with regard to heat and solute transport and all parame-
ters dependencies mentioned above.  

3. NUMERICAL SOLUTION  

3.1.  WEAK FORMULATION 

Let us multiply equation (2) by any function 0v H , 

where       1

1
0 2: , 0H v x v x W v x     and integrate it over Ω. We get: 

  

 

       

min min

min

min 3 .

l l

l l

l l l c T

c T s vd
c t T t

s Ns vd
t t N t

D s s K x K c K T vd

 
  

    

    







            

                  

             







 

Then let us apply Ostrogradsky's theorem to the terms containing divergence oper-
ator and use corresponding boundary conditions. Time discretization is done in the form 
of implicit difference scheme. Doing so we get a weak formulation of equation (1): 

  

   

  

1 1
1

min min

1 1
1

1
1 1

min 3

3
1

1

,
up

k k k k
kl l

k k k k
k

l
N

k k
k k

l l l c T

c
p t l

c c T T s v d
c t T t

N Ns v d
t t

s s v K x K c K T v d
t

x K
v q q K c C n

n D

 
  

 


   



 



 






 





        
     

  
    
   

           
  

       







lq

   1 1
min 0, 0,1, 2...

up

k k
l

d

D s s v d k    



 

        




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Performing same procedures over equations (3) and (6) gives: 

 

  

1
1 1 1

1
1

1 1

1

1 ,

0,

up

k k k
k k kl

c
l

k
kl

up
l

k k k k
l

l

c c c v d D c v d
c t

c c v d c C n vd
c

c T T N NT v d v d
T t t


 














  

 



 

 

 

         
   

 
         
  

         
    

 

 

 

l l

l

q q

q

 

1 1 1
1

0 0

1 1 , 0,1, 2...

k k k k k k
k

T N s s

k k
l l

T T N Nc v T c c v d
t t t

T v d c T v d k

 

 

  



 

 

         
      

      



  lq
 

Initial conditions in weak formulation are written in the form of: 

               

       

0 0

0

, ,

,

, ,

.

s t v d S d c t v d C d

T t v d T d

v v

v

 



     

 

  



 



 



X X X X X X

X X X

X X

X
 

Equation (4) ought only to be discretized with respect to time:  

 
1

1 1
1 , 0,1, 2...

k k
k kN N c N k

t
  


 

  


 

Its solution can be calculated iteratively in the form of: 

1
1 1

1
, 0,1, 2...

1

k k
k N c t

N k
t

 
 


  

 
 

 

3.2. INPUT DATA 

 For the purpose of numerical experiments following parameter values have been 
used:  

5 2 26 63 10 , 10 , 0.01 ,c T cm m mK K Dkg day K day day
       

4
510 , 2143 ,T T

kg kJD cday m K m K
     
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3108 , 2165 , 0.87 ,N N
kgkJ kJcday m K kg Km

     
 

0 0 3

1
1 1 min

4.2 , 1 , 2167 ,

0.1 , 0.33, 3, 100 , 0.065, 10 .

l m m

b

kgkJ kJc ckg K kg K m
day kPa t days



    

   

      
 

In the case when some variable parameter dependencies were not taken into con-
sideration they have been assumed to be equal to the following values:

 
4

03

2

1000 , 0.013 , 10 ,

0.02 .

l l
kg m mk Kday daym

mD day

   


 

Functions defining initial and boundary conditions of the problem have been set as 
follows:  

 3 3
0 0 0 0

3
0 1 1

0.5, 70 , 10 2 , 100 ,

0.4, 2 , 24 , 10 .

     

     atm

S C kg m T y C N kg m

C kg m T C T C
 

3.3. RESULTS OF NUMERICAL EXPERIMENTS 

Numerical solution of the described problem has been found using FreeFem++ 
computational environment. It is a free software for solving boundary value problems 
with finite element method (FEM). It contains facilities for analytical description of the 
problem domain and boundary conditions, automated finite element mesh generation, 
solving boundary value problems in weak formulation and visualization of two and 
three-dimensional plots. FreeFem++ has its own C-based programing language that 
enables user to program computational algorithms, including discretization and lineari-
zation methods [2]. 

The given problem is solved for a period of half a year with 10-day time step. As 
said above, solutions of the classical moisture transport problem s  and of the problem 
considering heat and solute flow *s  are compared in this paper.  The resulting moisture 
distributions at the last time step for both cases, as well as their relative difference are 
shown on Fig. 2. The difference has been calculated as follows (providing 0s ): 

*
100%.s

s s
s


  
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a) 

 
b) 

 
c) 

 
Fig. 2.  Solution s of the classical moisture transport problem (a), solution *s  of the problem 

described in the paper (b) and their relative difference s , % (c)  
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From Fig. 2 we have that the degree of saturation ranges from 0.56 to 0.64. These 
values are not much different from the initial value because the chosen precipitation rate 
was not high. Relative difference between the found solutions is under 7%. The distri-
bution in the classical problem is more regular than in the case considering solute 
transport and variable porosity. It can be explained by the high salinization rate of the 
soil that prevents moisture downward percolation. Also the slowness of pore water flow 
may have been caused by a high concentration of salts, which results in its high density. 
As for the concentration of salts in the solid phase, it has decreased from the initial 
value of 100 kg/m3 to 94.4 kg/m3 on the lower and 91.8 kg/m3 on the upper boundary. 
Average rate of salt content reduction in the soil equals 6.1%. 

Solution of the same problem in the case of more intense rainfall is shown on 
Fig. 3. 

 
a) 

 
b) 

 
Fig. 3.  Solution *s  of the problem described in the paper (a) and the relative difference s  be-

tween it and the solution of classical problem, % (b) 

In this case the relative difference between the solutions is no more than 12%. 
Concentration of salts in the solid phase has decreased to 94.6 kg/m3 on the lower and 
81.3 kg/m3 on the upper boundary with average reduction by 8.5% over the whole do-
main.  
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4. CONCLUSIONS 

A mathematical model of soil moisture transport with variable porosity has been 
studied in this paper. Some variable process parameters associated with solute transport 
have been considered, as well as some methods of their determination described in litera-
ture. A setting of the problem has been formulated for the case of soil desalinization 
caused by rainfalls. Program realization of the corresponding algorithms has been con-
ducted using FreeFem++. In the course of numerical experiments solutions of the classical 
problem and the one considering solute and heat transport have been compared. As a 
result, it has been established that in the case of the latter moisture transport transpired 
more slowly. Relative difference between the solutions of corresponding problems 
amounts to 12% in the case of intense rainfall. During a period of six month for which a 
modelling has been conducted the concentration of salts in the solid component of the soil 
has decreased by 6.1% in the case of moderate and by 8.5% in the case of intense rainfall. 
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MODELOWANIE KOMPUTEROWE SYSTEMU DYNAMICZNEGO 

«OŚRODEK POROWATY – WILGOĆ – SUBSTANCJA CHEMICZNA»  
NA PRZYKŁADZIE WPŁYWU OPADÓW NA ODSALANIE GRUNTU 

(PRZYPADEK PRZESTRZENNY) 

Streszczenie 

Numerycznie badano model matematyczny transportu wilgoci o zmiennej poro-
watości. Zmiany porowatości są spowodowane rozpuszczaniem substancji che-
micznych związanych ze szkieletem gruntu. Znaleziono numeryczne rozwiązanie 
problemu w przypadku regularnych opadów. Programowa realizacja odpowied-
nich algorytmów została zaimplementowana w środowisku obliczeniowym  
FreeFem++. Przeprowadzono eksperymenty numeryczne i określono wpływ opa-
dów na odsalanie gruntu przy wysokim stężeniu soli w twardym komponencie. 

Słowa kluczowe: model matematyczny, ośrodek porowaty, przenoszenie wilgoci, 
przenoszenie masy, metoda elementów skończonych 

 


